Late Pliocene equatorial Pacific

Martin Medina-Elizalde1,2 and David W. Lea3

Received 13 April 2009; revised 8 December 2009; accepted 22 December 2009; published 28 May 2010.

[1] Late Pliocene foraminiferal Mg/Ca and \(\delta^{18}O\) records from Ocean Drilling Program Hole 806B in the western equatorial Pacific (WEP) reveal warm pool climate evolution during the onset of Northern Hemisphere glaciation, 3.1–2.3 Myr B.P. Mg/Ca data indicate an average late Pliocene sea surface temperature (SST) of 27.8°C, a small long-term cooling of 0.3°C between 3.1 and 2.3 Ma, and a glacial–interglacial (G–I) SST range of 2°C throughout this time interval. For comparison, Pleistocene SSTs at this site over the last 0.9 Myr average 27.7°C with a G–I range of 3°C. Orbital-scale variability in Hole 806B SSTs during the late Pliocene occurs predominantly at ~100 ka, in contrast to foraminiferal \(\delta^{18}O\) records, which show a dominant 41 kyr period. Variability at a 41 kyr period, out of phase with local annual insolation changes driven by obliquity, is also observed in the new WEP SST record. The WEP SST record suggests that an ~3°C equatorial Pacific SST zonal gradient prevailed during the late Pliocene, compatible with a weaker Walker circulation. Adjustment of Hole 806B SSTs for past changes in seawater Mg/Ca suggests that SSTs higher than 30°C prevailed at 3 Myr B.P., followed by a progressive cooling of the warm pool through the late Pliocene. The characteristics of late Pliocene tropical climate evolution suggest that atmospheric greenhouse gas forcing played a major role in driving the observed G–I SST changes.

I. Introduction

[2] During the late Pliocene (3.6–1.8 Ma), the climate of the Earth transitioned from a state of general global warmth to one of significant continental glaciation in the Northern Hemisphere. A progressive positive shift in foraminiferal \(\delta^{18}O\) records, together with evidence of major deposition of ice-rafted detritus in the North Atlantic and North Pacific, indicates massive accumulation of ice, predominantly on the Northern Hemisphere continents between 3.1 and 2 Ma [Jansen et al., 1988; Lisiecki and Raymo, 2005; Raymo et al., 1989; Shackleton et al., 1984]. Late Pliocene foraminiferal oxygen isotope records suggest that high-latitude Northern Hemisphere glaciation and/or deep ocean temperature cycles had a dominant periodicity of 41 kyr and that the dominant ~100 kyr period did not appear until after the mid-Pleistocene climate transition (MPT), at ~1 Ma [Berger et al., 1999].

[3] There has been considerable effort devoted to determining the magnitude of Pliocene tropical Pacific warmth and the climatic factors that maintained it [e.g., Barreiro et al., 2006; Brierley et al., 2009; Haywood and Valdes, 2004; Ravelo et al., 2004, 2006; Raymo et al., 1996; Rickaby and Halloran, 2005]. Significantly less attention has been devoted to characterizing tropical Pacific sea surface temperature (SST) cycles on glacial–interglacial (G–I) timescales and determining the driving factors of this variability [Brierley et al., 2009; Fedorov et al., 2006; Groeneveld et al., 2006; Lawrence et al., 2006].

[4] The only Pliocene-Pleistocene SST record available from the equatorial Pacific cold tongue with sufficient resolution to study G–I climate variability is the Ocean Drilling Program (ODP) Hole 846 (3°5’S, 90°49’W) record based on the alkenone unsaturation index [Lawrence et al., 2006]. Three other equatorial Pacific SST records that extend back to the early Pliocene, one from the warm pool and the other two from the cold tongue [Wara et al., 2005; Dekens et al., 2007], have insufficient resolution (sampled every 1–40 kyr) and continuity (numerous sampling gaps from 15 to 40 kyr) to be well suited for studies on G–I scales.

[5] The Pliocene SST record from the eastern equatorial Pacific (EEP) cold tongue, ODP Hole 846, shows dominant variability at a 41 kyr period with a phase consistent with high-latitude obliquity; that is, cold tongue SSTs are warm when annual insolation at the poles is at a maximum (and equatorial insolation is at a minimum) [Lawrence et al., 2006]. Several studies have proposed that Pliocene–Pleistocene tropical variability in the obliquity band was driven by high-latitude annual insolation changes and/or changes in meridional insolation gradients [Fedorov et al., 2006; Lawrence et al., 2006; Liu and Herbert, 2004; Philander and Fedorov, 2003; Raymo and Nisancioglu, 2003]. According to these studies, obliquity controls tropical SST variability by influencing the depth of the EEP thermocline, which oscillates to sustain a cycle of Pacific Ocean heat transport [Philander and Fedorov, 2003] or as a...
response to meridional insolation gradients [Raymo and Nisancioglu, 2003]. A corollary of these hypotheses is the prediction of a significantly larger G-I SST response in the EEP region, as opposed to the warm pool, because the thermocline is shallow enough for the trade winds to drive SSTs by modulating upwelling [Fedorov et al., 2006; Lawrence et al., 2006; Liu and Herbert, 2004; Philander and Fedorov, 2003; Raymo and Nisancioglu, 2003]. As pointed out by Medina-Elizalde and Lea [2005], however, the warm pool should not be affected by the thermocline shoaling mechanism because the thermocline is too deep to affect surface temperatures in this region. Furthermore, in the warm pool, SST is primarily determined through a one-dimensional balance between heat storage and heat flux to the atmosphere [Clement et al., 1996; Pierrehumbert, 2000; Seager et al., 1988].

[6] Consideration of the controls on SSTs in the cold tongue and warm pool can be used as a diagnostic tool to identify potential driving mechanisms of G-I SST cycles, particularly, to distinguish between atmospheric and oceanographic forcings. Medina-Elizalde and Lea [2005] showed that the evolution of equatorial Pacific SSTs during the Pleistocene was characterized by similar and synchronous SST cycles in the warm pool and cold tongue regions, with SST changes preceding high-latitude glaciations by several thousand years [Liu and Herbert, 2004; Medina-Elizalde and Lea, 2005]. This pattern, which is inconsistent with a larger SST response of the EEP cold tongue as expected from a mechanism involving adjustment of the EEP thermocline, was interpreted to reflect a major control by atmospheric greenhouse gases, particularly from CO₂, and their associated feedbacks [Medina-Elizalde and Lea, 2005].

[7] Here we present high-resolution equatorial Pacific Mg/Ca-based temperature, δ¹⁸O, and δ¹³C seawater histories available for the late Pliocene. These records were derived from ODP Hole 806B, a site on the equator in the heart of the Pacific warm pool that shows constant sedimentation rates and excellent foraminiferal preservation. This site has already yielded benchmark Pleistocene and Pliocene records [Berger et al., 1993; Lea et al., 2000; Medina-Elizalde and Lea, 2005; Wara et al., 2005].

[8] Time series analysis of the new late Pliocene Hole 806B SST record reveals previously unreported G-I SST variability that contrasts with records from high-latitude climate and challenges the conventional view of the late Pliocene “41 kyr world.” Furthermore, the new Hole 806B SST record provides evidence that reveals the possible mechanism driving equatorial Pacific SST variability. We discuss our results in the context of three major hypotheses proposed to explain G-I variability in equatorial Pacific SSTs: the thermocline, thermostat, and greenhouse forcing hypotheses. The evidence from the available tropical Pacific paleoclimatic records indicates that forcing by atmospheric greenhouse gases played a major role in driving late Pliocene equatorial Pacific G-I SSTs.

2. Methods

[9] We measured Mg/Ca and δ¹³C in tests (shells) of the surface-dwelling planktonic foraminifer Globigerinoides ruber from sediment core ODP Hole 806B on the Ontong Java Plateau (OJP) (0°19.1’N, 159°21.7’E; 2520 m water depth) (Figure 1). We converted G. ruber Mg/Ca data to annual SSTs using a relationship based on Pacific sediment core top analyses by Lea et al. [2000]. The δ¹³C seawater (δ¹³C water) record was calculated by removing the component in planktonic δ¹³C due to temperature using Mg/Ca-derived SSTs and the low-light paleotemperature equation determined for Orbulina universa [Benis et al., 1998].

[10] Cores 6H–5W through 8H–5W from Hole 806B were sampled at 5 cm intervals. Approximately 70–90 G. ruber shells were picked from the 250–350 µm–size fraction of each sample interval. Shells were gently crushed, homogenized, and split into three aliquots with ratios of approximately 2:2:1. The first two of these aliquots were cleaned using the University of California, Santa Barbara standard foraminiferal cleaning procedure [Lea et al., 2000]. Dissolved samples were analyzed by the isotope dilution/internal standard method using a Thermo Scientific Finnigan Element 2 sector field inductively coupled plasma–mass spectrometer. The third (smaller) aliquot was used to analyze stable isotope composition using a GV Instruments IsoPrime isotope ratio mass spectrometer. Analytical reproducibility of Mg
Figure 2. Late Pliocene WEP ODP Hole 806B (0°19.1’N, 159°21.7’E; 2520 m water depth) records based on the surface-dwelling foraminifera *G. ruber*. Gaps in the record are a result of coring gaps. The chronology is based on wiggle matching to the target benthic foraminiferal δ¹⁸O stack by Lisiecki and Raymo [2005]. (a) *G. ruber* Mg/Ca-derived SST record. Mg/Ca data were converted using the relationship (Mg/Ca)₅₀⁰⁰ = 0.3 exp (0.089 SST), where SST is in °C [Lea et al., 2000]. Each point is an average of two to four replicates. The *G. ruber* SST record shows a modest 0.3°C long-term trend over the Late Pliocene. (b) *G. ruber* δ¹⁸O record and (c) δ¹⁸O seawater record, calculated by extracting the component in planktonic δ¹⁸O explained by the Mg/Ca SSTs. (d) Benthic *C. wuellerstorfi* foraminiferal δ¹⁸O record [Karas et al., 2009] showing a long-term positive shift equivalent to 0.38‰/Myr. Some marine isotopic stages are indicated. Evolutionary spectral analyses for the SST record (Figure 2a) and benthic foraminiferal δ¹⁸O record (Figure 2d) are based on a multitaper method with 200 kyr windows and 50 kyr “jumps.” The ODP Hole 806B SST record and benthic and planktonic foraminiferal δ¹⁸O records are spectrally similar, with significant coherent amplitude at 41 and ~100 kyr periods. The SST record, however, has a greater contribution from the ~100 kyr period, whereas the 41 kyr period is dominant in both foraminiferal δ¹⁸O records.

3. Results

[11] The records span the late Pliocene between 3.1 and 2.3 Myr B.P., encompassing marine oxygen isotope stages (MISs) K1 to 91, with a resolution of 1.7 ± 0.3 kyr (Figure 2). We constructed the ODP Hole 806B age model by tuning a Hole 806B benthic (*Cibicidoides wuellerstorfi*) foraminiferal δ¹⁸O record (10 cm sampling resolution [Karas et al., 2009]) to the LR04 foraminiferal δ¹⁸O stack [Lisiecki and Raymo, 2005] by graphical correlation of stage transitions using the AnalySeries 1.2 software [Paillard et al., 1996]. The LR04 δ¹⁸O stack integrates up to 25 records from globally distributed sites over the time interval between 2 and 3.1 Ma.

[12] The cross correlation between the Hole 806B *C. wuellerstorfi* δ¹⁸O record and the LR04 δ¹⁸O stack is r = 0.83 (cross correlations are calculated using the Arand software [Howell et al., 2006]). Hole 806B has remarkably constant sedimentation rates (2.8 ± 0.3 cm/kyr) between 2.3 and 3.1 Ma, and because it lies above the present-day lysocline depth, it also has moderately good preservation of foraminiferal shells. There are two core gaps of ~22 cm (~8 kyr) that include parts of MIS 97 and MIS G11. The Hole 806B benthic foraminiferal δ¹⁸O record is spectrally similar to the LR04 stack reference record, with characteristic dominance of 41 kyr and a weaker contribution at ~100 and 23 kyr periods.

determinations was ±0.7% (1 standard deviation), and the average reproducibility of Mg/Ca sample splits was ±0.08 mmol/mol, equivalent to ±2.2% or ~0.2°C. The error of SST estimations related to G-1 calcite preservation changes is ~0.5°C based on the similar lysocline history between the Pliocene and Pleistocene suggested by CaCO₃ preservation records [Farrell and Prell, 1991; Lea et al., 2000]. The analytical precision of the δ¹⁸O measurements is better than ±0.06‰, as determined by replicate analysis of National Bureau of Standards (NBS) 19 and a second Carrara marble laboratory standard. Elemental ratios of Mn/Ca, Fe/Ca, and Al/Ca were analyzed at the same time as Mg/Ca to assess cleaning efficacy. There were no correlations between these elements and Mg/Ca throughout the sequence.

[13] The Hole 806B *G. ruber* δ¹⁸O and Mg/Ca-derived SST data indicate 20 G-1 oscillations from MIS K1 to MIS 91 between 3.1 and 2.3 Ma (Figure 2). The *G. ruber* δ¹⁸O record shows a modest 0.1‰ negative shift and a muted G-1 range of 0.6‰ during this time interval. The late Pliocene *G. ruber* Mg/Ca range is ~1 mmol/mol (from 3.2 to 4.2 mmol/mol), with higher Mg/Ca values associated with interglacial intervals and lower Mg/Ca values associated with glacial intervals. Average SST is 27.8°C ± 0.5°C, and the glacial-interglacial SST range is 2°C (~±2 standard deviations from the mean). The warmest SST observed, 29.2°C, corresponds to MIS 99, and the coldest, 26.4°C, corresponds to MIS 96. The SST record documents a small but statistically significant long-term cooling of 0.3°C/Myr over the late Pliocene. Tectonic backtracking of the OJP, where Site 806B is located, suggests a 1.3° southeasterly location with respect to its position 3 Myr ago [Kroeneke et al., 2004]. On the basis of the modern warm pool temperature field, no SST correction is needed to account for the migration of the OJP over the last 3 Myr.
The Hole 806B δ18O water record, which reflects continental ice volume and local salinity variability, does not indicate a statistically significant long-term trend (Figure 2d). The lack of a trend in δ18O water contrasts with the positive long-term shift observed in the LR04 benthic foraminiferal δ18O stack of 0.5‰/Myr over the late Pliocene. The observed δ18O water G-I range is 0.5‰ during the late Pliocene, with more negative values characteristic of interglacial intervals and more positive values associated with glacial intervals. Spectrally, the δ18O water record is characterized by a dominant 100 kyr period and minor contributions from the 23 and 41 kyr periods.

The ODP Hole 806B SST record and benthic and planktonic foraminiferal δ18O records are spectrally similar, with significant coherent amplitude at 41 and ∼100 kyr periods (Figure 2). The SST record, however, has a slightly greater contribution from the ∼100 kyr period relative to the 41 kyr period, with amplitudes of 0.34°C and 0.29°C, respectively, whereas the 41 kyr period is the stronger period in the benthic foraminiferal δ18O record, with amplitudes of 0.17‰ and 0.13‰ at 41 and 100 ka, respectively (the spectral density of both peaks in the two records overlaps within error) [Howell et al., 2006] (Figures 2 and 3a). The ODP Hole 806B planktonic δ18O record, in contrast to these two records, shows similar contributions at 100 and 41 kyr periods, with an amplitude of 0.07‰ in each. The cross correlation between the Hole 806B SST and benthic δ18O records is higher (r = 0.63) than that between the SST and G. ruber δ18O records (r = 0.53). Cross-spectral analysis indicates that SST changes precede benthic δ18O variability by 7.4 ± 3 kyr and 1.9 ± 0.9 kyr at the 100 and 41 kyr periods, respectively (95% confidence interval (CI)). Similarly, SSTs precede planktonic δ18O by 11.5 ± 9 kyr and 2.5 ± 1 kyr at the 100 and 41 kyr periods, respectively. The Hole 806B benthic and planktonic foraminiferal δ18O records are in phase at the dominant 41 and 100 kyr period components (r = 0.54).

Comparison of late Pliocene Hole 806B SSTs with a previous study of Pleistocene SST evolution, also from Hole 806B [Lea et al., 2000], indicates that the observed G-I SST range over the late Pliocene is smaller than that over the Pleistocene: 2°C versus 3.6°C (based on ±2 standard deviations from the mean) (Figure 4). Observed SST averages, however, are similar: 27.8°C over the late Pliocene and 27.7°C over the Pleistocene [Lea et al., 2000; Medina-Elizalde and Lea, 2005]. The Hole 806B SST record between 1 Ma and the Holocene [Lea et al., 2000; Medina-Elizalde and Lea, 2005] reveals a similar spectral pattern to the late Pliocene record, with a dominant 100 kyr component.
and a weaker 41 kyr component, in addition to a similar phase lead over foraminiferal \(\delta^{18}O \) records.

An additional factor that must be considered in calculating absolute Pliocene SSTs from foraminiferal Mg/Ca is the potential influence of past changes in seawater Mg/Ca \((\text{Mg/Ca}_{\text{sw}}) \). Available pore water data and modeling results [Fantle and DePaolo, 2006] suggest that \(\text{Mg/Ca}_{\text{sw}} \) between 3.1 and 2.3 Ma was about 20% below modern values. Compensating for this change requires an adjustment to Mg/Ca-based SSTs of about +1°C [Medina-Elizalde et al., 2008]. This adjustment affects not the glacial-interglacial variability in SST but rather the absolute values and secular trends. For example, the adjustment increases the secular cooling between 3.1 and 2.3 Ma and also increases the Pacific zonal SST contrast during this time interval by ~1°C (see section 4). Adjustment to Mg/Ca-based Pliocene SSTs is probably required, but there is considerable uncertainty about the exact magnitude of past \(\text{Mg/Ca}_{\text{sw}} \) changes [Fantle and DePaolo, 2006] and whether the partition coefficient for foraminiferal Mg/Ca depends on \(\text{Mg/Ca}_{\text{sw}} \) [Medina-Elizalde et al., 2008].

4. Discussion

4.1. Comparison Between Western and Eastern Equatorial Pacific SST Records: Pattern Matters

Comparison between the new Hole 806B SST record and the published ODP Hole 846 SST record based on alkenone unsaturation, which has a comparable resolution (3°5’S, 90°49’W; 3296 m water depth [Lawrence et al., 2006]) (Figure 1), suggests that G-I SST changes in the western equatorial Pacific (WEP) were somewhat smaller than in the EEP (Figure 5). The EEP cold tongue G-I SST range was ~3°C (detrended) during the late Pliocene, ~1°C larger than in the WEP warm pool. Time series analysis indicates that the SST ranges (twice the amplitude) associated with the ~100 and 41 kyr periods are 1.2°C and 0.75°C, respectively, in the Hole 846 SST record, whereas these ranges are 0.68°C and 0.58°C, respectively, in the Hole 806B SST record. It is important to point out that the dominant 100 kyr period present in the ODP Hole 846 SST record was not reported in the original study [Lawrence et al., 2006] because this variability was removed from the record to stress the higher-frequency 41 kyr variability, which was the focus of the study [Lawrence et al., 2006, Figure 2; K. Lawrence, Lafayette College, personal communication, 2008]. Cross-spectral comparison indicates that the Hole 806B and Hole 846 SST records are statistically coherent (95% CI), in phase, and that both have higher spectral density in the ~100 kyr period relative to the 41 kyr period (the spectral density of both peaks in the two records overlaps within error) (Figure 3b).

Comparison of long-term trends between the WEP (Hole 806B Mg/Ca) and EEP (Hole 846 alkenone unsaturation) SST records indicates that the difference between average cold tongue and warm pool SSTs increased progressively from 2.4°C at 3.1 Ma to 3.5°C at 2.3 Ma (Figure 5). It is important to point out that Site 846, located on the Nazca
The ODP Hole 806B and Hole 846 SST records show
complex equatorial Pacific SST variability at 100 kyr periods
during obliquity maxima deepens the tropical thermocline,
producing warming of surface waters associated with inter-
glacial intervals [Philander and Fedorov, 2003; Fedorov et al., 2006].
Alternatively, obliquity could also influence tropical Pacific SSTs by
modulating meridional pressure gradients and, thus, trade wind intensity
and upwelling in the EEP cold tongue [Raymo and Nisanciglu, 2003].
These mechanisms involving vertical adjustments of the EEP
thermocline should cause a particular SST pattern across
the equatorial Pacific: variability in SST at 41 kyr periods
in phase with high-latitude obliquity forcing and a larger SST
range in the cold tongue than in the warm pool. The larger
cold tongue SST range is expected because the thermocline is
much shallower in the EEP than in the warm pool, making
cold tongue SSTs more sensitive to vertical adjustments of the
thermocline. As an illustration of the different sensitivity of
surface water SSTs between the cold tongue and the warm
pool to the tilt of the thermocline, today, monthly SST anomalies
in the EEP associated with El Niño/La Niña events are
out of phase with similar anomalies in the warm pool.

The late Pliocene ODP Hole 806B warm pool and
Hole 846 eastern equatorial Pacific SST records do suggest
a larger SST range in the cold tongue region than in the warm
pool: 0.75°C for the cold tongue and 0.58°C for the warm
pool, in agreement with the prediction from the thermocline
hypothesis (Figure 5). The small difference between the SST
ranges (<0.2°C), however, suggests that another mechanism
besides a thermocline shift must be controlling equatorial
Pacific SST variability. Furthermore, adjustments of the
thermocline driven by obliquity fail to explain the dominant
100 kyr SST cycles in both equatorial Pacific records. It is
important to note that the 100 kyr SST range is also larger
in the cold tongue (1.2°C) than in the warm pool (0.68°C),
suggesting that the larger cold tongue SST change associated
with 41 kyr variability may not necessarily be indicative of
a response to changes in the depth of the EEP thermocline
[Philander and Fedorov, 2003; Fedorov et al., 2006].

4.2. Can the Thermocline Hypothesis Explain the G-I Pattern of Tropical Pacific SSTs?

[21] Several studies have proposed that high-latitude
annual insolation changes driven by obliquity could poten-
tially control tropical Pacific SSTs by creating an “imbal-
ance” in the oceanic heat budget that would have to be
restored by a heat gain/loss from the EEP cold tongue
[Philander and Fedorov, 2003; Fedorov et al., 2006]. To
maintain a balanced heat budget, an increase in oceanic heat
loss in high latitudes during obliquity minima requires an
increase in heat gain in low latitudes, which is accomplished
by shoaling the tropical thermocline, thus producing cooling
of tropical surface waters associated with glacial intervals.
Conversely, a decrease in oceanic heat loss in high latitudes
during obliquity maxima deepens the tropical thermocline,
producing warming of surface waters associated with inter-
glacial intervals [Philander and Fedorov, 2003; Fedorov et al., 2006].

4.3. High-Latitude Control of Tropical G-I SST Variability?

[22] As pointed out previously [Liu and Herbert, 2004;
Medina-Elizalde and Lea, 2005], direct annual insolation
changes at the equator driven by obliquity variations are
out of phase with 41 kyr variability in tropical SSTs and also
cannot explain the dominant 100 kyr periodicity in late

Figure 6. Pleistocene and late Pliocene Hole 806B western equatorial Pacific SST records based on *G. ruber* Mg/Ca (unadjusted for seawater changes) and eastern equatorial Pacific cold tongue ODP Hole 846 SST records based on the alkenone unsaturation index [Liu and Herbert, 2004; Lawrence et al., 2006]. The late Pliocene warm pool and cold tongue G-I SST ranges are ~1°C smaller than during the Pleistocene. The cold tongue G-I SST range is typically larger than the warm pool region.

Plate, has been near its present latitudinal position for its entire history, and thus, a temperature backtrack correction is likely not required [Pisias et al., 1995]. The enhancement of the equatorial Pacific zonal SST gradient by ~1°C is almost completely due to the 1.4°C cooling in the eastern equatorial Pacific [Lawrence et al., 2006]. This observation confirms prior observations of an increase in the zonal SST gradient during this time span [Wara et al., 2005] but with some differences. For example, comparison between the more sparsely sampled (~10–40 kyr) late Pliocene ODP Hole 806B WEP *Globigerinoides sacculifer* Mg/Ca SST record [Wara et al., 2005] and the ODP Holes 846 and 847 EEP cold tongue SST records, based on the alkenone unsaturation index (Hole 846 [Lawrence et al., 2006]) and *G. sacculifer* Mg/Ca (Hole 847 [Wara et al., 2005]), respectively, suggests an average late Pliocene equatorial Pacific SST zonal gradient of 2°C (Hole 846) or an absent gradient (~0.6°C ± 1.5°C) during most of the late Pliocene (Hole 847). The different estimates of the SST gradient relate to resolution, proxy, and/or site differences. Regardless, all of the comparisons support a reduced SST gradient along the equator during the late Pliocene.

[20] The ODP Hole 806B and Hole 846 SST records show
that equatorial Pacific SSTs during the late Pliocene followed
a similar pattern to that characteristic of the last million years
of Pleistocene (i.e., after the mid-Pleistocene transition
at 950 kyr B.P., here denoted post-MPT). Glacial-interglacial
SST variability in the eastern and western equatorial regions
during the late Pliocene and post-MPT was dominated by two
periodicities: a stronger 100 kyr period and a weaker 41 kyr
period, with a cold tongue SST range always larger than the
warm pool region. One clear difference between the Pliocene
and post-MPT is that the G-I SST range in both the warm
pool and cold tongue was smaller during the late Pliocene
than during the post-MPT (Figure 6).
Pliocene tropical Pacific SST records. Tropical SST variability also leads foraminiferal δ18O cycles (which are predominantly controlled by ice volume and polar temperatures) by several thousand years, arguing against a simple mechanism whereby the high latitudes drive the tropics [Lea et al., 2000; Liu and Herbert, 2004; Medina-Elizalde and Lea, 2005; Lawrence et al., 2006; this study]. It is important to note, however, that lead-lag observations based on comparing Mg/Ca-derived and alkenone-derived SSTs to benthic foraminiferal δ18O may be influenced by significant lags in the mixing of oxygen isotopes into the deep ocean, as suggested by new modeling studies [Wunsch and Heinbach, 2008]. Additional evidence against a high-latitude control on tropical SST evolution is provided by the lack of sensitivity of tropical Pacific SSTs to the very large Northern Hemisphere ice sheets during the Last Glacial Maximum, as suggested by general circulation models [Broccoli, 2000; Broccoli and Manabe, 1987]. Because late Pliocene Northern Hemisphere ice sheets were smaller compared to the Pleistocene, the size and the associated climate forcing potential of Pliocene ice sheets were likely to also have been reduced [Maslin et al., 1998].

4.4. Role of Atmospheric Carbon Dioxide

[24] An alternative hypothesis to explain the observed SST variability is that variability in atmospheric carbon dioxide at 100 and 41 kyr periods, and its associated feedbacks, controlled the evolution of equatorial Pacific SSTs during the late Pliocene. This suggestion is primarily based on the observation that the evolutionary patterns of equatorial Pacific SSTs during the late Pliocene and late Pleistocene time intervals are remarkably similar [Lea et al., 2000; Liu and Herbert, 2004; Medina-Elizalde and Lea, 2005; Lawrence et al., 2006; this study]. A previous study showed that during the post-MPT, the evolution of equatorial Pacific SSTs, Antarctic air temperatures, and atmospheric CO2 was characterized by dominant 100 kyr and weaker 41 kyr cycles, with these changes occurring synchronously, within timescale uncertainties [De Garidel-Thorun et al., 2005; Lea, 2004; Medina-Elizalde and Lea, 2005].

[25] Recent climate model studies indicate that tropical Pacific SSTs, particularly the EEP cold tongue, are sensitive to the radiative effect of rising atmospheric CO2 and its associated feedbacks [Knutson and Manabe, 1998; Vecchi et al., 2008; Vecchi and Soden, 2007]. The stronger SST response of the EEP cold tongue predicted by these models results from a weakening of the Walker cell and therefore weaker EEP upwelling. In the warm pool region, on the other hand, where the thermocline is too deep to be significantly affected by changes in the strength of the Walker cell, SSTs are expected to rise at a slower rate [Knutson and Manabe, 1998; Vecchi et al., 2008; Vecchi and Soden, 2007].

[26] If atmospheric CO2 changes during the late Pliocene followed the phase of high-latitude obliquity, as was the case for atmospheric CO2 during the last half million years [Lea, 2004; Shackleton, 2000], the radiative influence of CO2 on equatorial SSTs could account for both the phase and the SST lead over benthic δ18O. The 100 kyr variability in atmospheric CO2, on the other hand, could have an origin in the Southern Hemisphere around Antarctica, set by the turnover time for carbonate ions in the ocean with respect to the CO2-induced weathering of silicate rocks and the burial of CaCO3 on the seafloor [Toggweiler, 2008].

[27] Given the 100 kyr dominance in SST, why is the 100 kyr period not also dominant in late Pliocene foraminiferal δ18O records? Assuming that tropical SSTs respond to atmospheric CO2 forcing, the smaller late Pliocene WEP warm pool G-I SST range compared to the post-MPT implies a smaller G-I atmospheric CO2 range. We hypothesize that high-latitude climate was particularly sensitive to orbital forcing from obliquity variations during the Pliocene and the early Pleistocene [Huybers and Tziperman, 2008], perhaps because G-I variability in atmospheric CO2 was too weak to have had a large effect on ice sheets. This hypothesis would imply that a threshold was reached at the MPT, when G-I variability in atmospheric CO2 was sufficiently large to have exerted a major control on high-latitude climate, perhaps in conjunction with climate feedbacks from the tropics.

4.5. Long-Term Thermal Stability of the Pacific Warm Pool During the Pliocene-Pleistocene

[28] The long-term evolution of the tropical Pacific can be described as a progressive transition from relatively homogenous SSTs across the equatorial Pacific, reflecting either a perennial El Niño state, referred to as El Padre [Molnar and Cane, 2002; Ravelo et al., 2004; Wara et al., 2005], or more frequent El Niño events [Haywood et al., 2007], to an SST distribution characterized by strong zonal gradients and a prominent EEP cold tongue [Lea et al., 2000; Wara et al., 2005; Lawrence et al., 2006; this study]. This transition occurred over the late Pliocene, mostly in the form of progressive cooling in the cold tongue [Wara et al., 2005; Lawrence et al., 2006; this study]. WEP warm pool SSTs remained relatively stable throughout the last 5 Myr, as previously suggested by Wara et al. [2005] and confirmed by this study. The lack of a secular trend in warm pool SSTs during the late Pliocene is notable because Northern Hemisphere glaciation intensified over this time interval [Jansen and Stjoholm, 1991; Shackleton et al., 1984], suggesting that the climate evolution of the WEP was decoupled from intensification of Northern Hemisphere glaciation. The long-term stability of the warm pool is also at odds with the notion that greenhouse gases, particularly CO2 [Haywood et al., 2005; Lunt et al., 2008], and water vapor [Brierley et al., 2009] were responsible for the gradual global cooling of the Pliocene and represents a paradox in light of general circulation model (GCM) results of Pliocene global climate, which appear to require higher greenhouse gas levels to explain Pliocene warmth [Fedorov et al., 2006; Haywood and Valdes, 2004; Haywood et al., 2007].

[29] One hypothesis to explain why warm pool SSTs were not warmer during the early Pliocene calls on specific atmosphere-ocean interactions that act as a "thermostat," preventing SSTs from rising above a certain limit. Newell [1979] and Hartmann and Michelsen [1993] argued that above 30°C–31°C, evaporative cooling would exceed the heat input from radiation, thus limiting any further rise of tropical SSTs. The models in support of this idea, however, lack interactive dynamical transports of heat in the ocean and the atmosphere. Recent studies based on fully coupled
ocean–atmosphere GCMs suggest, in contrast to the thermostat hypothesis, that warm pool SSTs could indeed rise above 31°C if, for instance, the concentration of atmospheric CO2 rose above present levels of 375 ppm [Haywood et al., 2005, 2007; Vecchi et al., 2008]. If the results from these refined models are correct, why were warm pool SSTs not warmer during the early Pliocene warm interval?

One possible answer might lie in a proxy bias that affects warm pool SSTs. The computation of SSTs from foraminiferal Mg/Ca assumes that the seawater Mg/Ca ratio has remained the same over the last 5 Myr [Medina-Elizalde et al., 2008]. Recent studies based on pore water analysis and modeling suggest, however, that the seawater Mg/Ca ratio was ∼20% lower during the late Pliocene [Fantle and DePaolo, 2006]. Available warm pool Pliocene SST records are based on the foraminiferal Mg/Ca technique because the alkenone unsaturation index, another SST proxy, saturates at temperatures higher than 27.5°C [Conte et al., 2006; Herbert, 2003]. Adjustment of the Hole 806B Mg/Ca SST record to account for past changes in seawater Mg/Ca suggests that the warm pool was 1°C warmer during the late Pliocene than during the mid-Holocene, in agreement with recent climate model studies [Haywood et al., 2007] (Figure 7). If this result is correct, it solves the paradox of unchanged Pliocene warm pool SSTs. The adjustment for changing seawater Mg/Ca suggested by Medina-Elizalde et al. [2008], however, has uncertainties and requires additional validation before it can be reliably incorporated into Pliocene proxy records.

4.6. Pacific Warm Pool Hydrological Evolution During the Late Pliocene

The ODP Hole 806B δ18O water record provides an additional way to evaluate Pliocene climatic trends in the equatorial Pacific (Figure 2c). To be placed in context, the δ18O water record has to be compared to the global oxygen isotope trend, which records a 0.5‰/Myr increase over the late Pliocene, thought to reflect the growth of continental ice mass [Lisiecki and Raymo, 2005]. That the Hole 806B δ18O water record displays no trend over this time interval suggests that western equatorial Pacific waters became more isotopically depleted, which, in turn, implies a long-term freshening. This freshening, in conjunction with an increased zonal SST gradient, is consistent with a strengthening of Walker circulation over the course of the late Pliocene (Figures 2c and 5) [Ravelo et al., 2004; Wara et al., 2005]. Additional support for this view is provided by the marked rise in EEP productivity documented by the Hole 846 productivity record [Lawrence et al., 2006] because a stronger Walker circulation would enhance EEP upwelling and productivity. Adjustment of SSTs for changes in seawater Mg/Ca also affects the δ18O water trend. The adjusted δ18O water record, calculated by removing the component in planktonic δ18O due to adjusted
SSTs, suggests a decreasing trend of 0.2‰ from 3.1 to 2.3 Ma, which would imply an even stronger progressive freshening of the warm pool during the late Pliocene.

5. Conclusions

A late Pliocene (3.1–2.3 Myr B.P.) western equatorial Pacific (WEP) Mg/Ca-based SST record from ODP Hole 806B reveals previously unreported variability in tropical warm pool waters. The glacial-interglacial SST range over the late Pliocene is smaller than during the Pleistocene [Lea et al., 2000]. 2°C versus 3°C, and SST cycles are dominated by an ~100 kyr period and a weaker 41 kyr period that is out of phase with local annual insolation changes driven by obliquity. High-latitude climate records based on foraminiferal δ18O, in contrast, are dominated by variability at 41 ka during the late Pliocene [Lisiecki and Raymo, 2005]. WEP warm pool SST cycles lead benthic δ18O cycles by 7.4 ± 3 kyr and 1.9 ± 0.9 kyr at the 100 and 41 kyr periods. Comparison of the ODP Hole 806B SST record to an eastern equatorial Pacific cold tongue record based on alkaline unsaturation ratios [Lawrence et al., 2006] suggests that the equatorial Pacific zonal SST gradient increased from 2.4°C at 3.1 Ma to 3.5°C at 2.3 Ma (estimated errors of ±1°C). These estimates of the late Pliocene zonal SST gradient are somewhat larger than in previous studies [Wara et al., 2005]. The ODP Hole 806B δ18O water record, computed from simultaneous Mg/Ca SSTs and δ18O measurements, indicates a long-term freshening of the warm pool during the late Pliocene. The long-term trends in tropical SSTs and warm pool δ18O water are both consistent with a strengthening of the Walker circulation during the late Pliocene. The character of late Pliocene equatorial Pacific temperature evolution suggests that glacial-interglacial SST cycles were driven at least in part by radiative forcing due to atmospheric CO2 variability at 100 and 41 kyr periods. If ODP Hole 806B SSTs are adjusted for past seawater Mg/Ca changes [Medina-Elizalde et al., 2008], they suggest a 1°C cooling between 3.1 and 2.3 Myr B.P., with late Pliocene warm pool SSTs exceeding 30°C. Higher Pliocene warm pool SSTs and a secular cooling during the late Pliocene are both consistent with a progressive decrease in atmospheric CO2 over the Pliocene-Pleistocene, as suggested by models that attempt to simulate Pliocene warmth.

References

Karabash, C., et al. (2005), Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow, Nat. Geosci., 2, 434–438, doi:10.1038/ngeo520.

