Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids

Sara B. Benjamin and Rachel M. Haymon
Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California 93106, USA (haymon@geol.ucsb.edu)

[1] Heat flow data indicate that most hydrothermal heat loss from ocean lithosphere occurs on the flanks of the mid-ocean ridge, but few ridge flank hydrothermal sites are known. We describe the first nonseamount, abyssal hill hydrothermal mineral deposits to be recovered from the fast spreading East Pacific Rise (EPR) flanks. Deposits were sampled at two sites on an abyssal hill ~5 km east of the EPR axis, just north of Clipperton Fracture Zone at 10°20'N, on ~0.1 Ma lithosphere. “Tevnia Site” is on the axis-facing fault scarp of the hill, and “Ochre Site” is located ~950 m farther east near the base of the outward-facing slope. Clusters of fragile, biodegradable Tevnia worm tubes at both sites indicate that hydrothermal fluids carried sufficient H₂S to sustain Tevnia worms, and that fluid flow waned too recently to allow time for tube destruction. Presence of microbial mats and other biota also are consistent with recent waning of flow. The deposits are mineralogically zoned, from nontronite-celadonite to hydrous Fe-oxide+opaline silica to Mn-oxide (birnessite and todorokite). This places them into a distinctive class of Fe-Si-Mn hydrothermal deposits found along tectonic cracks and faults in young oceanic crust, and suggests that (1) deposits precipitated along an O₂ gradient between ambient seawater and hydrothermal fluid; (2) fluid temperatures were <150°C; and (3) undiluted fluids were Mg-depleted, and Fe-, K-, Si- and Mn-enriched. These fluids may derive from high temperature seawater-basalt interaction ± phase separation proximal to the axial melt zone, and lose Cu and Zn before venting due to conductive cooling and/or pH increase. Ochre Site samples are purely hydrothermal; however, Tevnia Site samples incorporate volcanic, sedimentary, and fossil components, and exhibit at least three generations of fracturing and hydrothermal cementation. The Tevnia Site breccias accumulated on the exposed fault scarp, possibly during multiple slip events and hydrothermal pulses as the abyssal hill was uplifted. We hypothesize that frequent earthquakes rejuvenate young abyssal hill hydrothermal systems episodically over 10⁴–10⁵ years, tapping axial heat and hydrothermal fluids, sustaining biota, and likely helping to chill the margins of the axial melt zone.

Components: 15,443 words, 15 figures, 6 tables.

Keywords: equatorial Pacific; excursion; orbital modulation; paleointensity; paleomagnetism.

Index Terms: 3017 Marine Geology and Geophysics: Hydrothermal systems (0450, 1034, 3616, 4832, 8135, 8424); 3021 Marine Geology and Geophysics: Marine hydrogeology; 3035 Marine Geology and Geophysics: Mid ocean ridge processes.

Received 7 May 2005; Revised 27 September 2005; Accepted 15 December 2005; Published 3 May 2006.

1. Introduction

[2] Heat flow measured in ocean lithosphere younger than ~65 Ma is below model predictions of heat flow from a conductively cooled plate. This is attributed to hydrothermal cooling of the lithosphere on the crest and flanks of the mid-ocean ridge [Williams et al., 1974; Anderson et al., 1977; Stein et al., 1995]. From a synthesis of global heat flow data, it is estimated that heat flux of ~11 ± 4 × 10^12 W is removed from ocean lithosphere by hydrothermal advection, and that a large majority (up to 70–90%) of this hydrothermal heat flux occurs on ridge flanks in seafloor ≥100,000 years old [Johnson and Pruis, 2003; Stein and Stein, 1994; Morton and Sleep, 1985].

[3] It is notable that fully half of the ridge-flank hydrothermal heat loss occurs during the first 5 Ma in thinly sedimented abyssal hill terrain on mid-ocean ridge flanks [Johnson and Pruis, 2003]. Supporting evidence for large magnitude hydrothermal flux from young abyssal hills includes progressive rapid increase in seismic velocity of Layer 2A in 0–5 Ma crust on the East Pacific Rise (EPR) flank [Carlson, 1998] and concomitant decrease in crustal porosity [Fisher and Becker, 2000], which are both attributable to the filling of voids by minerals precipitated from freely circulating hydrothermal fluids. Added evidence is the extensive alteration and veining [Alt, 1995] observed in 6.9 Ma (D. Wilson, personal communication, 2005) drill core from the Nazca plate at Hole 504b. The role of young abyssal hills in ridge flank hydrothermal cooling may be particularly important at fast and intermediate spreading rates. On the intermediate-rate Juan de Fuca Ridge, Kappel and Ryan [1986] proposed that abyssal hills form from tectonic splitting of elongate axial volcanic ridges constructed at the ridge axis. Studies of EPR abyssal hills show that the overwhelming majority of these hills are not split axial volcanic ridges, but instead have formed from volcanic growth faults that begin to develop within a few kilometers of the ridge axis [Macdonald et al., 1996]. On the EPR flanks, hills are rapidly uplifted as much as 250 m in 100,000–700,000 years, at distances of 5–40 km away from the ridge axis [Alexander and Macdonald, 1996; Crowder and Macdonald, 2000].

[4] Despite the large magnitude of estimated ridge flank hydrothermal heat loss, and its possible chemical and biological consequences, very little is known about characteristics of hydrothermal vents and mineral deposits in the abyssal hill-dominated terrain covering vast areas of the ocean floor [Macdonald et al., 1996]. Most prior work on ridge flank hydrothermal activity has focused on venting associated with ridge flank volcanic seamounts [e.g., Alt et al., 1985; Hekinian and Fouquet, 1985; Mottl et al., 1998; Fisher et al., 2003a, 2003b]. Only two previously reported ridge flank hydrothermal sites are clearly unrelated to seamounts: the Galapagos Mounds on 0.6 Ma seafloor south of the Galapagos Rift [Lonsdale, 1977; Williams et al., 1979; Honnorez et al., 1983], and Lost City, on 1 Ma seafloor west of the Mid-Atlantic Ridge (MAR) [Kelley et al., 2001]. Our study of EPR abyssal hill hydrothermal samples is the first description of nonseamount hydrothermal deposits on the flanks of a fast spreading ridge, and is the youngest example of nonseamount ridge flank deposits yet documented.

2. Site Descriptions

[5] Samples of hydrothermal mineral deposits were collected on the EPR flank with the Alvin submersible on Dive 2695 in January of 1994. The samples were recovered from a fault-bounded abyssal hill, located ~5–6 km east of the EPR axis and just north of the Clipperton Fracture Zone (Figure 1). On the basis of a full spreading rate of 109 mm/yr for the EPR in this area [Carbotte and Macdonald, 1992], the deposits are located on crust that is ~100,000 years old (0.1 Ma).

[6] A total of three samples were recovered from two recently active hydrothermal sites: “Tevnia Site” and “Ochre Site.” Samples 2695-1 and 2695-2 were both collected from Tevnia Site, situated on the essentially vertical, axis-facing fault scarp bounding the west side of the abyssal hill, at 10°20’N, 103°33.2’W and 2900 m depth (Figure 1). Sample 2695-4 was collected from Ochre Site at the base of the east slope of the hill (10°20’N, 103°32.6’W, 2966 m depth; Figure 1), where the outward-facing fault scarp is draped by lobate lava flows [Macdonald et al., 1996].

[7] Traversing the abyssal hill from west to east (Figures 1b and 1c), Alvin divers encountered well-sorted, fresh-looking talus cut by a series of meter-wide, ridge-parallel fissures on the western side, and then ascended the nearly vertical, axis-facing scarp in which freshly truncated layer 2A volcanic flows are exposed. Tevnia Site was discovered halfway up this steep western fault scarp where
discrete colonies of intact dead *Tevnia* worm tubes were observed clinging to the scarp (Figure 2). Divers identified these tubes as *Tevnia* because they observed the characteristic closely spaced concentric ridges created by flanges on the tubes of this species (K. Macdonald, personal communication, 2005). Each clump of *Tevnia* tubes was encircled by a halo of ochre-yellow staining on the surrounding substrate. Samples 2695-1 and 2695-2 (Figures 1c and 3) were collected at depths of 2924 m and 2911 m (respectively) from dark-colored, concretionary material locally covering the fault surface near the yellow-stained *Tevnia* tubes (Figure 2). *Tevnia* is an early-colonizing species of tubeworm that is common at active hydrothermal sites on the EPR crest [Shank et al., 1998]. Because *Tevnia* require reduced sulfur compounds, their occurrence here demonstrates that reduced hydrothermal fluids were emitted from the scarp at the time of colonization. Preservation of fragile *Tevnia* worm tubes, which are subject to biological and mechanical degradation (including events of mass wasting along the active fault scarp), suggests relatively recent hydrothermal activity. Galatheid crabs, shrimp (Figures 4b and 4c), “dandelion” siphonophores, and mossy microbial floc attached to the fault scarp face were reported and/or photographed by divers at *Tevnia* Site. These organisms typically inhabit active diffuse flow vent sites on the EPR axis [Shank et al., 1998]. Their presence suggests that fluid discharge here was either ongoing and invisibly diffuse or had ceased only recently (i.e., within months) prior to Dive 2695. No temperature anomalies could be measured at the site because the *Alvin* low-T probe was not functioning during Dive 2695 (K. Macdonald, personal communication, 2005).

[8] After sampling *Tevnia* Site, the submersible drove to the top of the scarp, where sediment cover is \(\sim 10-20\) cm thick and forms pockets between pillows. *Alvin* crossed the crest of the abyssal ridge at \(\sim 2800\) m, and continued down the east side of the hill (see Figure 1). The lava-draped eastern
slope of the hill, unlike the steeper west-facing scarp, is dominated by volcanic flows and constructional features. Both elongate and bulbous pillows were observed near the base of the eastern slope. At a depth of 2970 m, *Alvin* encountered a second hydrothermal area which we have named “Ochre Site.” Like Tevnia Site, the seafloor at Ochre Site is covered by a pavement of mineral encrustation with a rough-textured, dark-colored upper surface that is accented by discrete patches of bright yellow *Tevnia* clumps. At the jagged edges of the encrustation, yellow mineralization is visible underneath the dark-colored upper crust (Figure 5). Sample 2695-4 (Figure 6) was collected from this concretionary material at a depth of 2966 m (see Figure 1c). The dark-colored surficial material in the seafloor photos (Figure 5) corresponds to Layer III in the sample photo (Figure 6), and the yellow mineralization in the seafloor photos corresponds to Layer II.

3. Methods of Sample Documentation and Analysis

Prior to analysis, the hydrothermal samples were photo-documented and visually described. To identify the mineral phases present, three standard analytical methods were used: reflected/transmitted light microscopy, powder X-ray diffraction (XRD), and electron probe microanalysis (EPMA).

[10] Optical microscopy was used to identify trace minerals and noncrystalline phases that would be undetected by XRD analyses. Representative sub-samples of the hydrothermal encrustations were sent to High Mesa Petrographic in Los Alamos, NM where double polished thin sections were made. Subsamples were impregnated with epoxy, and cut across distinctly colored mineral layers (see Figure 6) to provide a cross-sectional view of the different mineral zones present in the samples. Petrographic relationships were observed in thin sections with a polarizing optical microscope, using both reflected and transmitted light.

[11] XRD analyses were used to identify the dominant crystalline phases. In preparation for XRD analysis, the hydrothermal deposits were selectively subsampled by removing small amounts of material from visually distinct mineral zones (Figure 6). Subsampled material was ground to a fine ($2–10 \text{ micron}$) powder, and mounted onto a glass slide. Separation of a $<2 \text{ micron}$ phyllosilicate fraction was achieved by centrifuging. The phyllosilicate separates were mounted as packed unoriented powders and as oriented slurries on glass slides. Duplicate oriented slides were treated with ethylene glycol to expand the basal spacings of any swelling phyllosilicates that might be present [Jackson, 1969]. All of the slides were then analyzed using...
a Philips X’ Pert powder X-ray diffractometer, and Cu Kα radiation. A scan speed of 0.040 degrees/s and a 20 mA current was used in every case except for the phyllosilicate separates, which were analyzed at a slower scan speed (0.020 degrees/s) and higher current (40 mA) to improve peak resolution of indistinct peaks.

A five-spectrometer electron microprobe (Cameca model SX-50) was used to gather quantitative chemical data for calculation of a unit-cell formula for the phyllosilicate component. Multiple points were analyzed in target areas where microcrystalline phyllosilicate was identified optically on a polished thin section of sample 2695-4-1a.

4. Sample Descriptions and Petrographic Features

4.1. Tevnia Site Samples

Samples 2695-1 and 2695-2 are very similar samples recovered from the western, axis-facing fault scarp at Tevnia Site (Figures 1, 2, and 3). For each sample, a summary description is provided in Table 1a, and a list of the minerals identified in the samples is provided in Table 1b. With varying degrees of distinctness, the hand samples grade from a friable, greenish-yellow phyllosilicate to a yellow-orange hydrous Fe-oxide zone to a dark-brown, indurated Mn-oxide crust (Figure 3).

The Tevnia Site samples are breccias composed of volcanic, hydrothermal, and biogenic components (Figures 3, 7, and 8). The fine-grained matrix is composed largely of oxidized Fe-minerals, spherulitic opaline silica, and microfossiliferous sediment (Figure 7a). Inclusion of sediment components in the matrix establishes that mineralization occurred on the exposed scarp, rather than within the seafloor. Enclosed in this matrix are clasts of basaltic rock fragments, glass shards, and composite microbreccia fragments internally cemented by hydrothermal precipitates (Figure 7b). Brecciation in these samples occurs at the microscale to macroscale: Figure 3 shows a large basalt
fragment embedded in sample 2695-2. Optical microscopy reveals that the Tevnia Site breccia samples contain at least three generations of tectonic brecciation and hydrothermal cementation (Figure 9). The photomicrograph in Figure 9a shows an elongate microbreccia clast cemented by a fine-grained hydrothermal matrix. In this example, the matrix of the microbreccia is the “first generation” of hydrothermal cementation. The microbreccia clast is in turn embedded in the “second generation” hydrothermal cement which composes the dominant matrix of the sample. A crack extends through the coherent microbreccia clast and is in-filled by a “third generation” of hydrothermal precipitation, shown in detail by Figure 9b. Figures 9c and 9d show a throughgoing crack which cuts across the “second generation” cement and is then capped by a “third generation” of hydrothermal material at its terminus (magnified in Figure 9d). Figure 9c also shows the microbreccia clast featured in Figure 7b (denoted with an asterisk) adjacent to a crack which bisects the sample. The absence of subsequent hydrothermal cementation within or at the termination of this crack suggests that it may represent the most recent cracking event.

In thin section, a greenish-yellow mineral phase forms alteration rinds around included basalt clasts and is present at the edges of glass shards (Figures 10a–10d). In the matrix, the same alteration mineral occurs massively in relatively homogeneous zones, often commingled with opaline silica and fine-grained oxidized Fe-minerals. This mineral has the appearance of a cryptocrystalline phyllosilicate that retains a greenish-yellow color in cross-polarized light. Yellow staining from oxidized Fe-minerals likely augments the strong coloration of the phyllosilicate mineral. The phyllosilicate is identified as a mixed layer nontronite-celadonite.

Table 1a. Description of Alvin Dive 2695 Hand Samples and Polished Thin Sections

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hand Sample Description</th>
<th>Petrography of Polished Thin Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>irregularly shaped fragments (1–5 cm pieces); thin layering evident but discontinuous & irregular</td>
<td>matrix/cement composed of Fe-oxide + silica + celadonite-nontronite; clasts include forams + other microfossils + mm-sized crystalline basalt & glass fragments + microbreccia clasts</td>
</tr>
<tr>
<td>2</td>
<td>flat sample (22 cm long × 5 cm thick); exhibits distinct colored layers; 5 cm basalt fragment embedded into it; see Figure 3</td>
<td>matrix/cement composed of Fe-oxide + silica + celadonite-nontronite; clasts are forams + other microfossils + crystalline basalt & glass fragments + microbreccia clasts</td>
</tr>
<tr>
<td>4</td>
<td>thick sample (12 cm long × 8 cm thick); exhibits distinct colored layers (each ~2–3 cm); friable; see Figure 6</td>
<td>nontronite-celadonite w/ birnessite ± todorokite filling fractures</td>
</tr>
</tbody>
</table>
tronite-celadonite on the basis of crystal structure and composition (see sections 6.1 and 6.2), and apparently corresponds to the greenish-yellow layer identified as Layer I in the hand samples (see example of layering in Ochre Site sample shown in Figure 6).

4.2. Ochre Site Samples

[16] Sample 2695-4 (Figure 6) was collected from the eastern side of the abyssal hill at Ochre Site (see Figures 1 and 5, Tables 1a and 1b). This sample does not contain volcanic or biogenic sedimentary components. It is purely a hydrothermal precipitate with a mineral assemblage that is essentially the same as the hydrothermal component in the Tevnia Site samples. The greenish-yellow phyllosilicate is pervasive, and again is associated with colloform silica and some oxidized Fe-minerals (Figures 11a and 11b). Where this greenish-yellow phyllosilicate is concentrated in thin sections, a gridded pattern of undulatory extinction is observed in cross-polarized light and at low magnification that mimics the “tartan” extinction of twinned microcline (Figure 11a). Preferred growth orientation of phyllosilicate microcrystals may cause the anomalous extinction observed. In sample 2695-4, the phyllosilicate mineral has cracked and has been in-filled by an opaque mineral (Figures 11c and 11d). In reflected light this opaque secondary mineral exhibits a roughly concentric, onion-like habit (Figure 11d). Optical properties indicate that this in-fill is todorokite and/or birnessite. XRD data (section 6.1) show that both minerals are present. Sample 2695-4 exhibits a well-defined mineral zonation sequence. Figure 6 shows the succession of zones from (I) a more friable greenish-yellow layer, to (II) a yellowish-orange layer, to (III) a more indurated dark brown/black layer, with each zone spanning ~10–20 mm. Between the yellowish-orange-colored layer and the black layer, there is a small band of shiny, hard, black material which gives way to the matte-colored bulk of the dark layer, eventually terminating at the edge of the sample with a relatively smooth black crust.

5. Fauna and Microfossil Descriptions

5.1. Fauna

[17] Several organisms reported and/or photographed from Tevnia and Ochre Sites are endemic to deep sea hydrothermal vent areas (e.g., Tevnia tube worms, bivalves, “dandelion” siphonophores) while others (e.g., galatheid crabs, microbial mats, shrimp) are common but more equivocal indicators of deep-sea hydrothermal activity (Figures 2 and 4).

[18] The Tevnia worms (discussed in section 2) provide direct evidence of recent hydrothermal
activity on this young EPR abyssal hill. At the climax of hydrothermal flow, the fluids must have carried sufficient H$_2$S to sustain Tevnia individuals and their endosymbionts. However, as venting waned and fluid temperature dropped, a decrease in H$_2$S concentrations coupled with an increase in iron may have choked off the Tevnia colonies in a manner similar to the coupled vent fluid evolution and faunal succession previously observed by Shank et al. [1998] on the EPR axis at 9°27′N. Although the yellow-colored precipitate observed on and around the worm tubes at Tevnia and Ochre Sites (see Figure 2) was not sampled, this material may contain hydrous Fe-oxide, which was deposited on and around dying worm colonies at 9°50′N during this declining stage of venting [Shank et al., 1998].

[19] Alvin video footage for dive 2695 shows moss-like microbial mats attached to basaltic outcrops. These microbial flocculations grow densely on the fault scarp and are pervasive around both Tevnia and Ochre Sites. Microbial flocc observed growing on bare basalt substrate in ridge environments has been observed thus far only in association with hydrothermal vents. Similar-looking microbial flocc, sampled in 2002 from an abyssal hill fault scarp 25 km west of the EPR axis at 9°27′N, contained a diverse assemblage of thermophilic and hyperthermophilic Archaea associated with high-temperature sulfide mineral particles, including chalcopyrite [Haymon et al., 2005]. On the basis of these observations, Haymon et al. [2005] speculated that the microbes had been flushed out of a hot subseafloor biosphere thriving in hydrothermal reservoirs within the ridge flank. Abundance of microbial mats at Tevnia and Ochre Sites is consistent with the hypothesis that venting at these sites either was ongoing (but not visible), or had ceased only recently; however, without samples of the observed mats and the fluids that nourished them, it is not possible to infer the growth temperature of these mats, or the provenance of the microbes.

[20] At Ochre Site, an empty but intact bivalve shell was photographed on bare basalt at a depth of ~2795 m (Figure 4a). Although the bivalve was not positively identified, size and shape suggest that it may have been Calyptogena magnifica, a species endemic to hydrothermal vent environments. In a study by Kennish and Lutz [1999], the complete dissolution of an adult C. magnifica shell was estimated at ~300 years when located in the vicinity of a hydrothermal vent at ridge crest depth (2615 m); this dissolution rate is 20 times faster than the rates observed at non-vent ridge crest sites. Therefore persistence of this intact bivalve shell at 2795 m depth, where both carbonate undersaturation and acidic hydrothermal fluids would be expected to accelerate dissolution, is consistent with other observations suggesting that Tevnia and Ochre Sites are not fossil ridge-crest vents, but are instead recently active, abyssal hill vent sites.

5.2. Microfossils

[21] Pelagic and benthic microfossils were found only in the brecciated samples collected from the axis-facing fault scarp (Tevnia Site). Presence of
this biogenic sediment component suggests that the hydrothermal precipitates from Tevnia Site formed over an extended period of time, gradually incorporating material from the steady rain of marine snow from above. The microfossil assemblage is dominated by forams (Figure 7a). Figure 12 is a series of photomicrographs from a hydrothermal sample showing the pattern of foram preservation.

Figure 8. Photomicrographs in plane polarized light of thin sections from Tevnia Site breccia samples, showing fossils preserved by hydrothermal mineralization. (a) White arrows point to a possible fossilized worm tube in cross section (sample 2695-2). (b) Black arrow points to a benthic foraminiferan preserved by nontronite-celadonite (sample 2695-1).

Figure 9. (a–d) Photomicrographs in plane polarized light of two Tevnia Site thin sections (from sample 2695-1) that exhibit at least three generations of brecciation and hydrothermal cementation; mb, microbreccia fragment; asterisk (*) denotes same microbreccia clast as shown in Figure 7b. Generations of hydrothermal cement are labeled 1, 2, and 3, where 1 is the first generation of hydrothermal precipitate, cementing microbreccia clasts which are embedded in cement 2, 2 is the second generation hydrothermal cement, composing primary matrix of the collected hand samples, and 3 is the third generation hydrothermal cement. Figure 9b shows the third generation cement filling a crack that is shown in Figure 9a cutting through both the first and second generation cements. Figures 9c and 9d also show at least three generations of hydrothermal recementing, including a layer of late mineral precipitates (below white dotted line in Figure 9d) that cap the terminus of a crack cutting through generation 2 matrix cement.
across the mineral zones (representative of a redox gradient). In the hydrous Fe-oxide + silica zone (Layer II) the calcareous foram shell is well-preserved (Figures 12a and 12b); while in the more reduced nontronite-celadonite zone (Layer I), the foram tests are either dissolved out (Figures 12c and 12d) or replaced by nontronite-celadonite (Figures 12e and 12f). Other fossilized biota seen in thin sections may include worm tubes (Figure 8).

5.3. Fossilized Microbes

A variety of microbe-like filamentous textures were observed in thin sections from the abyssal hill hydrothermal deposits. Figure 13 shows three of these microtextures, preserved in opaline silica and/or Fe-oxide. Although it has not been confirmed, a microbial origin for these microtextures seems likely. According to Jannasch [1995], precipitation of hydrothermal manganese is predominantly microbial, and other investigators describe similarly sized (1–2 μm diameter) filaments, attributable to hydrothermal microbes, coated by ferrihydrite and silica [e.g., Juniper and Fouquet, 1988; Little et al., 2004]. Previous work has shown that microbes mediate ferrihydrite precipitation [Edwards et al., 2004; Boyd and Scott, 2001; Kennedy et al., 2003; Emerson and Moyer, 2002], and experimental study demonstrates that in Fe-rich solutions bacterial silicification may occur as a two step process: (1) Fe partitioning onto bacterial cells via sorption and surface precipitation, followed by (2) Si sorption/precipitation onto the Fe-coated bacterial surface [Yee et al., 2002]. Preservation of microbial filaments by celadonite-nontronite (Figure 13c) has been described previously in samples from the southern Explorer Ridge [Fortin et al., 1998].

6. Results of Mineral Analyses

6.1. XRD Results

Minerals identified by XRD are summarized in Table 1b. On the basis of comparison of the peak patterns in the samples with the ICDD
powder diffraction file database, we have identified the four distinctly colored/textured materials present in the samples as: a mixed-layer nontronite-celadonite (greenish-yellow smectite-mica phase, Layer I), X-ray amorphous silica and hydrous Fe-oxide (yellow-orange friable material, Layer II), and birnessite ± todorokite (dark-colored Mn-oxide material, Layer III). Figure 14 shows XRD patterns for the phyllosilicate separates, and Table 2 provides XRD data for the Mn-oxide minerals comprising Layer III. The fine-grained, ferric oxide phase in Layer II may be ferrihydrite but because of its X-ray amorphous structure, we simply refer to it as “hydrous Fe-oxide” [Jambor and Dutrizac, 1998].

The greenish-yellow phyllosilicate is poorly crystalline, exhibiting broad XRD reflection peaks (Figure 14). A swelling smectite component is present, on the basis of expansion of the (001) basal d spacing after glycolation (from approximately 13Å to 16Å; Figure 14) and occurrence of a composite (060) peak at ~1.52Å. In different subsamples, the phyllosilicate basal reflections show irregular variation in intensity, and are sometimes absent. The peaks match or fall between peaks for nontronite and celadonite, indicating that the sample is a mixed-layer smectite-mica.

If a mixed layer phyllosilicate is regularly interstratified, its basal reflections will be rational. To test for rationality in the basal reflections, basal d spacings were selected from a glycolated, nontronite-celadonite XRD pattern (2695-4f). These d spacings were used to calculate the coefficient of variability (CV) (Table 3) [Bailey, 1988]. The calculated CV values are greater than 0.75%, and therefore fall into the irrational category [Bailey, 1982] characteristic of an irregularly interstratified mixed-layer phase. Thus the greenish-yellow phyllosilicate appears to be an irregularly interstratified mixed-layer nontronite-celadonite. To check this identification, microprobe analyses on the phyllosilicate composition were conducted (see section 6.2).

6.2. EPMA Results

Quantitative elemental analyses (acquired by EPMA) were obtained for the greenish-yellow
smectite-mica phyllosilicate. Major cation weight percent oxide values and atomic proportions are shown in Table 4. Oxides total to ~96%, leaving at most 4 wt.% attributable to water. Stoichiometry is based on 24 oxygen equivalencies. The iron-rich and aluminum-poor nature of this smectite-mica phyllosilicate is consistent with thin-section observations and XRD data (Figure 14), and points to a nontronite (Fe-smectite) and celadonite (Fe-mica) composition. The mica component was categorized as celadonite (rather than glauconite) on the basis of three criteria: (1) the dominance of Mg in the 2+ octahedral site, (2) tetrahedral Al (or Fe³⁺) <0.2 atoms per formula unit, and (3) a contribution to the d(060) peak which appears to be <1.510Å (as recommended by the Clay Minerals Society Nomenclature Committee; see Bailey et al. [1979] and Figure 14).

[27] Stoichiometric formulas were calculated for these two phyllosilicates by first assigning the K and Mg to a standard celadonite formula of K₂(Mg₂Fe₂)(Si₈)O₂₀(OH)₄. Next, the remaining molar proportions were assigned to a nontronite formula, resulting in the following stoichiometry: \((\frac{1}{2}Ca_{0.04}Na_{0.69})(Mg_{0.01}Fe_{4.00})\) \((Si)_{7.10}(Fe_{0.90}Al_{0.02})O_{20}(OH)₄\) (see Table 4). On the basis of this formula, the calculated relative abundances of nontronite and celadonite in the mixed-layer phyllosilicate are 68% nontronite and 32% celadonite.

7. Comparison to Similar Seafloor Hydrothermal Deposits

[28] Most nontronite and Mn-oxide deposits previously recovered from ridge flanks occur on isolated volcanic seamounts [Piper et al., 1975; Batiza et al., 1977; Lonsdale et al., 1980; Malahoff et al., 1982; Alt et al., 1985; Marchig et al., 1999; Boyd and Scott, 2001]. These seamount hydrothermal
deposits are geochemically similar to the deposits we describe, but are not genetically comparable to abyssal hill deposits which have formed in amagmatic, tectonized, thinly sedimented settings. It is important to characterize tectonic abyssal hill hydrothermal systems, which are seldom-described yet are responsible for much advective cooling and alteration of ocean lithosphere. Therefore we compare the Tevnia Site and Ochre Site samples to other well-described examples of Fe-Si-Mn hydrothermal deposits from nonmagmatic ridge environments in Tables 4 and 5. The numbered columns in Table 4 correspond with the sites described in Table 5. The Fe-Si-Mn samples in Tables 4 and 5 all come from either (1) true “off-axis” locations, where seafloor age is at least 0.1 Ma (columns 1 and 2), or (2) sites on medium- to slow-spreading ridge crests (columns 3–7) that are magma-starved, faulted, and may host hydrothermal systems similar to fault-controlled ridge flank systems. At these nonseamount mid-ocean ridge sites, hydrothermal deposits exhibit mineral assemblages and layering strikingly similar to the deposits in this study. Specifically, this class of hydrothermal deposits grades from an “interior” zone of Fe-silicate (nontronite ± celadonite), to a hydrous Fe-oxide and opaline silica-dominated zone, terminating with an “exterior” Mn-oxide zone.

Figure 13. Thin section photomicrographs in plane polarized light from Tevnia Site breccia samples (2695-1 and 2695-2), showing microbial textures preserved by hydrothermal mineralization. Two sizes of microbe-like textures are found in both the oxidized (Layer II, III) zones and the more reduced zone (Layer I). (a) Filamentous microbe-like textures preserved in Layer II by Fe-stained amorphous silica. (b) Coral-like, anastomising texture within void space throughout the Tevnia Site samples, which appears to be a network of branching filamentous microbial fossils preserved in silica; note that these filaments are an order of magnitude smaller than those shown in Figures 13a and 13c; very fine opaque mineral grains are dispersed and suspended in the silica filament network. (c) Filamentous texture shown here may be microbial fossils preserved within Layer I nontronite-celadonite.
This mineral zonation sequence is thought to form from mineral precipitation along a mixing gradient between reduced, Fe-rich hydrothermal fluid and oxygenated seawater [Grill et al., 1981]. The effective segregation of Fe and Mn along a redox gradient created by mixing distinguishes these hydrothermal samples from unfractionated hydrogenous marine ferromanganese deposits that form ubiquitously on the seafloor at low temperatures [Corliss et al., 1978; Grill et al., 1981; Boyd and Scott, 2001].

Among the deposits described in Tables 4 and 5, the Galapagos Mounds most closely resemble our EPR abyssal hill samples in composition, age and geologic setting. However, the Galapagos Mounds were deposited within a blanket of pelagic sediment that covers an abyssal hill fault.

Figure 14. Powder X-ray diffraction (XRD) patterns for the phyllosilicate phase (<2 μm fraction) separated from the greenish-yellow material in Layer I (Figure 6). X axis = # detected counts; Y axis = d spacing (in Å). (top) Untreated, oriented slide shows a smectite basal spacing of 13 Å. (bottom) Ethylene glycol treated slide exhibits a smectite basal spacing expansion to 16 Å. Stick patterns show ICDD-PDF d spacings for nontronite in red (ICDD-PDF file 34-0842) and celadonite in cyan (ICDD-PDF file 17-0521). Observed peaks fall on or between peaks for nontronite and celadonite and are consistent with identification of an irregular mixed layer nontronite-celadonite phase.

Table 2. Powder X-Ray Diffraction Data for Well-Crystallized Mn-Oxide

<table>
<thead>
<tr>
<th>d Spacing, Å</th>
<th>Angle, °2θ</th>
<th>Relative Intensity, %</th>
<th>Todorokite, hkl</th>
<th>Birnessite, hkl</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.43</td>
<td>6.588</td>
<td>45</td>
<td>non-cel</td>
<td>non-cel</td>
</tr>
<tr>
<td>9.844</td>
<td>8.98</td>
<td>100</td>
<td>100, 001</td>
<td>002</td>
</tr>
<tr>
<td>7.285</td>
<td>12.14</td>
<td>97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.935</td>
<td>17.96</td>
<td>51</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>3.548</td>
<td>25.08</td>
<td>45</td>
<td>-</td>
<td>212</td>
</tr>
<tr>
<td>3.304</td>
<td>26.97</td>
<td>25</td>
<td>non-cel, 300, 202</td>
<td>-</td>
</tr>
<tr>
<td>2.449</td>
<td>36.67</td>
<td>50</td>
<td>401, 211, 112, 004</td>
<td>144, 161</td>
</tr>
<tr>
<td>1.798</td>
<td>50.74</td>
<td>20</td>
<td>-</td>
<td>316, 433, 181</td>
</tr>
<tr>
<td>1.706</td>
<td>53.69</td>
<td>56</td>
<td>non-cel</td>
<td>non-cel</td>
</tr>
<tr>
<td>1.643</td>
<td>55.93</td>
<td>9</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1.620</td>
<td>56.80</td>
<td>16</td>
<td>-</td>
<td>461</td>
</tr>
<tr>
<td>1.544</td>
<td>59.87</td>
<td>27</td>
<td>non-cel</td>
<td>non-cel, 119, 0101, 347</td>
</tr>
<tr>
<td>1.416</td>
<td>65.91</td>
<td>29</td>
<td>020</td>
<td>611</td>
</tr>
<tr>
<td>1.290</td>
<td>73.33</td>
<td>14</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1.276</td>
<td>74.26</td>
<td>10</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

aSee Figure 6.

bIncludes minor phyllosilicate component (nontronite-celadonite).

cNon-cel = admixed nontronite-celadonite component responsible for or contributing to peak.
Table 3. Coefficient of Variability (CV) Values for the Mixed-Layer Phyllosilicate in Abyssal Hill EPR Samples

<table>
<thead>
<tr>
<th>Apparent Order</th>
<th>d Spacing</th>
<th>Apparent Order × d</th>
<th>[mean – (order × d)]²</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.25</td>
<td>16.25</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.45</td>
<td>14.90</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.00</td>
<td>15.00</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.74</td>
<td>14.96</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.43</td>
<td>14.58</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.14e</td>
<td>1.66e</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.644e</td>
<td>4.25%a</td>
</tr>
</tbody>
</table>

aCV = 100 × (standard deviation/mean); Bailey [1982, 1988].
bFor glycolated subsample 2695-4f.
cMean value of (apparent order × d).
dSum of [mean – (order × d)]².
eStandard deviation = (sum/(N – 1))².

in ~600 Ka seafloor [Lonsdale, 1977; Natland et al., 1979]. The active Galapagos Mounds have been forming over the past 100-300 Ky, and did not begin to form until the crust was already at least 200 Ky old and already buried by sediment [Williams et al., 1979; Honnorez et al., 1983; Lalou et al., 1983; Buatier et al., 1989]. Sedimentation has played an important role in the thermal history of the Galapagos Mounds, which clearly is not the case at Tevnia and Ochre Sites.

Only our EPR samples (column 1 in Tables 4 and 5) and those collected from the Galapagos Mounds and the MAR FAMOUS area (columns 2 and 4) reportedly contain an Fe-mica phase (celadonite or glauconite). Table 4 shows that the nontronite phases are all chemically similar, exhibiting particularly high Fe and low Al content. The East Pacific Rise (this study) and the Galapagos Mounds (the two “true off-axis” sites, see Tables 4 and 5) exhibit the lowest aluminum values. Low Al and Mg indicates that iron is occupying some tetrahedral sites as well as nearly all of the octahedral sites [Bischoff, 1972; Goodman et al., 1976] (Table 4). Low Mg and high Fe suggests that the nontronite precipitated from Mg-depleted and metal-enriched hydrothermal fluid that was largely undiluted by Mg-rich seawater.

8. Prior Experimental and Isotopic Studies of Nontronite and Celadonite Formation

8.1. Nontronite

The majority of marine smectites are formed authigenically by three primary processes outlined by Cole and Shaw [1983]: alteration of volcanic rocks and glass (<20°C), formation from biogenic silica and Fe-oxyhydroxides at ambient bottom water temperatures, and direct precipitation out of low to moderate temperature (<150°C) hydrothermal fluids. Laboratory synthesis experiments as well as examination of authigenic marine smectites indicate that Fe-smectite (nontronite) forms under a wide range of temperature and redox conditions.

[32] Harder [1976, 1978] found that nontronite could be precipitated at ambient seafloor temperatures either from reducing solutions rich in ferrous iron, or under initially oxidizing followed by reducing conditions. However, more recent studies [Decarreau and Bonnin, 1986; Decarreau et al., 1987] have shown that at 75°C a ferric dioctahedral smectite forms by nucleation under initially reducing conditions (as a ferrous stevensite) followed by rapid nontronite crystal growth upon sudden exposure to oxygen in air [Decarreau and Bonnin, 1986]. In another laboratory experiment, nontronite formed under strictly oxidizing conditions at elevated temperatures over an extended period (12 days at 100°C and 1 month at 150°C) [Decarreau et al., 1987]. This work is in agreement with Harder [1976, 1977, 1978], who found that under oxidizing conditions nontronite cannot be synthesized at temperatures between 3º and 80ºC. Oxygen isotopic data from naturally occurring seafloor hydrothermal nontronites show formation temperatures ranging from 3º to 140ºC [Cole and Shaw, 1983; Murnane and Clague, 1983; Corliss et al., 1978; Barrett and Friedrichsen, 1982; McMurtry and Yeh, 1981; McMurtry et al., 1983].

8.2. Celadonite and Mixed Layer Nontronite-Celadonite

Celadonite occurs as an alteration product and as a vein-filling precipitate in basaltic ocean crust. Celadonite is usually thought to be a product of low-temperature oxidative reaction between basalt and seawater [Seyfried et al., 1978; Alt, 1995]. This interpretation is based on oxygen isotope formation temperatures ≤40°C for vein celadonite in seafloor drill cores [Kastner and Gieskes, 1976; Seyfried et al., 1978; Bohlke et al., 1984], and on a close association of celadonite with Fe-oxyhydroxide [Seyfried et al., 1978; Alt, 1995]. However, celadonite + Fe-oxide also can form when K- and Fe-rich hydrothermal fluids cool and/or mix with seawater within volcanic host rocks. Studies of upper crust basalt alteration at ODP Site 801 (created at a fast spreading ridge) and at Hole 504b (created at an intermediate-rate spreading ridge)
both show that the earliest alteration assemblage consists of celadonite, mixed-layer celadonite-smectite, Fe-oxyhydroxide, and quartz [Alt and Teagle, 2003]. Oxygen isotope values for vein quartz and vein celadonite in Site 801 core samples yield calculated formation temperatures ranging up to 95°C for quartz and up to 67°C for celadonite. Maximum calculated temperatures are in veins near the bottom of the borehole, at 410–445 m of penetration into volcanic basement (above the volcanic/dike transition zone). Celadonite formation temperatures at Site 801 were calculated using the illite-water fractionation factor from Savin and Lee [1988] and by assuming equilibration with ambient seawater having δ^{18}O = 0% [Alt and Teagle, 2003]. However, equilibration with δ^{18}O-
Table 5. Geologic Settings of Nonseamount Seafloor Hydrothermal Fe-Si-Mn Deposits

<table>
<thead>
<tr>
<th>Spreading Center</th>
<th>True “Off-Axis” Sites</th>
<th>Magma-Starved Ridge Crest Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 East Pacific Rise (This Study)</td>
<td>3 Gulf of Aden (FAMOUS Area)</td>
</tr>
<tr>
<td></td>
<td>2 Galapagos Rift (Galapagos Mounds)</td>
<td>4 Mid-Atlantic Ridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Explorer Ridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Juan de Fuca Ridge (Cobb Offset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 Mid-Atlantic Ridge (TAG Field)</td>
</tr>
<tr>
<td>Latitude and longitude</td>
<td>10°20’N, 103°37’W</td>
<td>12°34’N, 47°39’E</td>
</tr>
<tr>
<td>Full spreading rate</td>
<td>~7 cm/y [Carbotte and Macdonald, 1992]</td>
<td>~1 cm/y [DeMets et al., 1990, 1994]</td>
</tr>
<tr>
<td>Reference(s)</td>
<td>this study</td>
<td>Curn et al. [1977]</td>
</tr>
<tr>
<td>Location</td>
<td>~5 km E of EPR axis</td>
<td>~20 km S of GSC axis</td>
</tr>
<tr>
<td>Depth</td>
<td>~2900 m</td>
<td>~2700 m</td>
</tr>
<tr>
<td>Age</td>
<td>deposits <100,000 y</td>
<td>seafloor ~100,000 y to 300,000 y max.</td>
</tr>
<tr>
<td>Depositional surface</td>
<td>bare basalt</td>
<td>bare basalt and sediment</td>
</tr>
<tr>
<td>Tectonic environment</td>
<td>active, exposed abyssal hill normal fault scarps</td>
<td>abyssal hill normal fault scarps</td>
</tr>
<tr>
<td>Temperature (observed anomalies in seawater or sediments)</td>
<td>none</td>
<td>2°C/m gradients</td>
</tr>
</tbody>
</table>

Location
- ~5 km E of EPR axis
- ~20 km S of GSC axis
- ~3 km N of MOR axis
- Transform Fault A
- 37 km from actively spreading Western Rift
- 2.5 km W of projected MOR axis (propagating ridge segment)
- MAR rift valley wall

Depth
- ~2900 m
- ~2700 m
- 2260 – 2500 m
- ~2700 m
- ~3000 – 3200 m
- seafloor ~1 Ma
- 2500 – 3500 m

Age
- deposits <100,000 y
- seafloor ~100,000 y to 300,000 y max.
- deposits ~45,000 y max.; seafloor ~1 Ma
- deposits prob. <10,000 yrs seafloor
- ~250,000 y max.

Depositional surface
- bare basalt
- carbonate sediment
- unknown
- bare basalt
- carbonate ooze

Tectonic environment
- active, exposed abyssal hill normal fault scarps
- series of en echelon lateral slip faults in median rift valley
- active transform fault zone
- median ridge of inactive Eastern rift
- OSC (overlapping spreading center)
- east wall of rift valley
enriched hydrothermal fluids would shift the calculated formation temperatures to slightly higher values. By substituting a reasonable range of hydrothermal fluid δO18 values (i.e., 0.4 to 2.13‰ at 9–10°N on the EPR axis [Shanks et al., 1995]), formation temperatures from 72–87°C are obtained for pure celadonite; for mixed layer nontronite-celadonite, higher formation temperatures are possible, increasing with an increased smectite component up to the maximum temperature for pure nontronite (~150°C).

[34] Early-formed celadonite-nontronite in ocean crust thus may be largely hydrothermal in origin, with a basaltic source for both K and Fe, rather than a product of low temperature seawater-basalt interaction. Glaucnite-nontronite also is known to form from reaction of hydrothermal fluid with pelagic sediment in the Galapagos Mounds [Buatier et al., 1989].

[35] We conclude from existing experimental and isotopic data that nontronite can form at temperatures up to 150°C in hydrothermal environments that evolve or fluctuate in oxidation state. Celadonite is known to form at temperatures up to at least 70°C. Additional work is needed to establish the maximum formation temperature possible for hydrothermal nontronite-celadonite, but on the basis of the existing data for nontronite and celadonite we estimate that this maximum temperature lies between 70–150°C.

9. Inferred EPR Abyssal Hill Fluid Properties and Fluid Source

[36] Temperature and composition of EPR abyssal hill hydrothermal fluids at the Tevnia and Ochre Sites can be inferred from the precipitated mineral assemblage, and from the presence of Tevnia tubeworms.

[37] The temperature of the fluids was most likely <150°C, based on the phyllosilicate phases present, and almost certainly was <200°C, based on the absence of Zn and Cu minerals. At discharge temperatures above 200°C, Zn and/or Cu are mobilized and precipitated in seafloor hydrothermal deposits [Haymon and Kastner, 1981; Crerar and Barnes, 1976; Janecky and Seyfried, 1984; Seyfried and Ding, 1995]. At the Galapagos Mounds, where Fe-Si-Mn hydrothermal mineral deposits strongly resembling the EPR abyssal hill samples have formed, calculated oxygen isotope formation temperatures for opaline silica fall between 60–172°C [Skirrow and Coleman, 1982] and temperatures calculated from heat flow measurements are estimated at ~30°C [Becker et al., 1983]. Geochemical modeling of seawater-hydrothermal fluid mixing indicates that at temperatures ranging from 50–200°C, mixtures of ridge crest hydrothermal fluids and seawater become saturated with respect to amorphous silica [Janecky and Seyfried, 1984]. We have not determined oxygen isotope formation temperatures for the silicate minerals in the EPR abyssal hill samples because it is very difficult to separate the silicates from one another and from finely dispersed oxide phases. However, on the basis of all of the foregoing observations, we conclude that the mineral assemblage at Tevnia and Ochre Sites must have formed from fluids <150°C.

[38] The mineral zonation sequence from nontronite-celadonite → hydrous Fe-oxide + silica → Mn-oxide observed in Tevnia Site breccia samples also is observed at other sites described in Table 5. Corliss et al. [1978] proposed that at the Galapagos Mounds, Gulf of Aden, and Mid-Atlantic Ridge (MAR) “FAMOUS” hydrothermal sites, pelagic sediment cover allowed nontronite to precipitate under reducing conditions beneath a cap of ferromanganese oxide formed at the sediment-seawater interface. In bare-basalt hydrothermal settings like the Tevnia and Ochre Sites, mixing at the rock/water interface between reduced fluids in volcanic basement rock and oxygenated seawater provides the spontaneous shift in redox conditions described by Decarreau and Bonnin [1986] required to convert ferrous stevensite to nontronite, and creates an O\textsubscript{2} gradient that explains the zonation observed from Mn-oxide in the “exterior” zone (in contact with seawater) to nontronite-celadonite in the “interior” zone (in contact with basalt). The presence of the Tevnia worm tubes is an independent indicator that the end-member hydrothermal fluids were reducing enough to transport H\textsubscript{2}S. Although most of the calcareous microfossils observed in these samples have been replaced with hydrous Fe-oxide, some preservation of CaCO\textsubscript{3} fossils is observed within the Fe-oxide layer, but not in the nontronite-celadonite zone (Figure 12). These observations are consistent with the hypothesis that the observed mineral zonation sequence developed along a mixing gradient between lower-pH, more reducing hydrothermal fluid and more alkaline, oxygen-rich ambient seawater.

[39] The observed EPR abyssal hill hydrothermal mineral assemblage requires a hydrothermal fluid...
enriched in Fe, K, Mn, and Si, and depleted in Mg. Most basalt-hosted ridge crest “end-member” hydrothermal fluids exhibit these chemical characteristics [Von Damm, 1995]. Edmond et al. [1979a, 1979b] and Bischoff [1980] argued that high temperature basalt-seawater reaction is needed to enrich fluids in K and metals, and basalt-seawater interaction experiments show that seawater K is removed into basalt alteration products at reaction temperatures below 70°C, and released from basalt at temperatures above 150°C [e.g., Bischoff and Seyfried, 1978; Seyfried and Bischoff, 1979; Seyfried, 1987; Seyfried et al., 1991]. Von Damm [1995] has shown that enrichments in K and metals are greatest in high-chlorinity axial vent fluids that have undergone subseafloor phase separation at high temperatures. On the EPR axis at 9°–10°N, time series studies of vent fluid composition have demonstrated that when phase separation occurs, low-chlorinity condensed vapors are vented first while denser, high-chlorinity conjugate fluids remain sequestered within the seafloor [Von Damm et al., 1997; Von Damm, 2000]. If axial fluid flow pathways are clogged by mineral precipitation before the high chlorinity fluids are pumped out, these brines could be trapped within the seafloor for an indefinite time period. Subsequent breaching of such an isolated brine reservoir by off-axis faulting could supply young abyssal hills with deep-sourced hydrothermal fluids characterized by low Mg and high concentrations of Cl, K, Si and metals. Alternatively, seawater that penetrates downward along off-axis faults to the margins of the EPR axial magma chamber could react at high temperatures to form low Mg, K-, Si- and metal-enriched hydrothermal fluids that discharge from young abyssal hills (~1–5 km away from ridge axis, i.e., ~0.1 Ma). Dashed and broadened arrow tails indicate uncertainties about flow paths and fluid source depths. We propose that fluids discharging from the axis and from adjacent, young abyssal hills both are derived from the hot margins of the axial melt zone within basaltic crust (see text).

Figure 15. Schematic cross section perpendicular to the EPR axis at 10°20’N; sketch based on actual bathymetric profiles at this latitude (from Macdonald et al. [1992] SeaBEAM data combined with Alvin dive 2695 depth profile). True dips of subseafloor faults are unknown, and the dips shown (dashed lines) represent extrapolations of exposed abyssal hill fault scarps dips into the subsurface. Stippled region represents the seismic Low Velocity Volume (LVV), i.e., the melt zone beneath the EPR crest, which is shown here by scaling the Dunn et al. [2000] model for the LVV at EPR, 9°30’N to fit the narrower dimensions of the triangular axial high at 10°20’N. Approximate locations of Tevnia and Ochre Sites are indicated by “T” and “O,” respectively. Arrows indicate paths of hydrothermal discharge. High T (>250°C) fluids discharge at ridge-axis (0 km) and lower T fluids (<150°C) discharge from young abyssal hills (~1–5 km away from ridge axis, i.e., ~0.1 Ma). Dashed and broadened arrow tails indicate uncertainties about flow paths and fluid source depths. We propose that fluids discharging from the axis and from adjacent, young abyssal hills both are derived from the hot margins of the axial melt zone within basaltic crust (see text).
Gorda Ridge axis on the faulted wall of the axial rift valley (K. Von Damm, personal communication, 2005).

[40] Potassium enrichment and celadonite formation in volcanic flows of Hole 504b, located on the Nazca plate south of the Costa Rica Rift, extend from the sediment/basement interface down to ~200 m above the base of the volcanic section [Alt, 1995]. Uptake of K from seawater into basalt at low temperature is the generally accepted cause of this enrichment, however it is possible that hydrothermal flux through abyssal hills may also contribute. The thickness of seismic layer 2A (widely assumed to be the volcanic extrusive layer) at the EPR axis is estimated to be approximately 200 m [Christeson et al., 1994]. Development of off-axis faults begins 1–3 km away from the EPR axis [Carbotte and Macdonald, 1992], where the thickness of seismic layer 2A is 300–600 m [Christeson et al., 1994]. As the volcanic pile accumulates, the most porous flows are the youngest flows at the top that have not yet been compacted and sealed by mineralization. Therefore it is conceivable that K-enrichment and celadonite formation in the uppermost 300–400 m of the volcanic section occurs by episodic injection of potassic, ferrous, conductively cooled axial hydrothermal fluids that travel upward along off-axis faults and into porous upper lava flows. This speculation is consistent with the hydrothermal origin suggested by Alt and Teagle [2003] for celadonite occurring in fast-spread basement drill core from ODP Site 801 in the southwestern Pacific. Alt and Teagle [2003] argue that the celadonite and overlying massive Si-Fe deposit found at Site 801 were formed from venting at the ridge axis. However, sediment intercalated with the volcanic flows beneath the deposit, and the low δ13C values of carbonate veins in these flows compared to basalt flows deeper in the hole (indicating fluid interaction with carbonate sediments), together suggest that the Si-Fe deposit and celadonite formed off-axis on the ridge flank. The Site 801 Si-Fe deposit is 10–20 m thick. No deposit of this description has yet been found at the axis of a fast spreading ridge. We propose that thick Fe-Si-Mn deposits may be more typical products of ridge flank hydrothermal systems.

It is distinctively different from the calcium carbonate + brucite mineral assemblage precipitated on the seafloor from Mg-rich, alkaline fluids venting at the ultramafic-hosted Lost City hydrothermal site on the MAR flank [Blackman et al., 1998; Kelley et al., 2001]. It is likely that the EPR abyssal hill hydrothermal pathways at our study site do not penetrate below the Moho, and are not tapping fluids involved in serpentinization.

10. Implications for Geometry of Fluid Flow

[42] The geometry of fluid flow on ridge flanks is poorly known and much debated [Fisher et al., 2003a; Fisher and Becker, 2000; Fisher, 1998; Johnson et al., 1993; Davis et al., 1989, 1999; Baker et al., 1991, Wheat et al., 2004, and references therein]. Fehn et al. [1983] made a distinction between “active” hydrothermal convection cells driven by heat from magmatic sources beneath the ridge crest, and migrating “passive” ridge flank convection cells driven by heat within the spreading plate. The region of transition from “active” to “passive” hydrothermal convection is not well-defined, and probably varies greatly with spreading rate. Also, recent seismic tomography along the EPR in our study area suggests that mantle melt sources (i.e., seismic low velocity zones) are not perfectly aligned beneath the EPR axial high [Toomey et al., 2003].

For the global MOR, Stein et al. [1995] adopted the terminology “axial” for hydrothermal flux from 0–0.1 Ma lithosphere, “near-axial” for flux from 0.1–1 Ma lithosphere, and “off-axial” for flux from >1 Ma lithosphere. However, on the fast spreading EPR the term “off-axis” commonly refers to hydrothermal activity that is outside the narrow (<0.3 km) axial summit zone, but still on the 1–8 km-wide axial high; and the term “ridge flank” commonly refers to the region adjacent to the axial high, with no age limitation.

[43] For greater clarity and applicability to different hydrothermal regimes on fast spreading ridges, we use “axial” to refer to vents on the axial high, and to fluids circulating in “active” systems powered by melt sources beneath the axial high. We use “young abyssal hills” to refer to the zone adjacent to the axial high in which active faulting and uplift of hills is occurring. We suggest that “mature abyssal hills” be applied to abyssal hill terrain that is outside the zone of active faulting and hill uplift, but which is not yet buried by sediments, and that “buried abyssal hills” be applied to older ridge
flank regions where advective heat loss is still occurring beneath a continuous cover of sediment pierced only by isolated volcanic seamounts [e.g., Fisher et al., 2003a, 2003b].

[44] The EPR abyssal hill site that we describe here is only ~5 km away from the ridge axis, and is adjacent to a narrow axial high. Our site is in the “young abyssal hill” zone, as defined above, and possibly at the transition between “active” and “passive” hydrothermal circulation. Figure 15 shows a schematic cross section perpendicular to the EPR axis based on the actual bathymetric depth profile at 10°20’N. The schematic cross section depicts spatial relationships between the axial high, the youngest abyssal hills, and the axial seismic low velocity volume (LVV). In this figure we use the seismic tomography model of the LVV developed by Dunn et al. [2000] for the EPR at 9°30’N, and scale it down horizontally to match the relatively narrower width of the axial high at 10°20’N. Both the actual width of the LVV at 10°20’N and the actual dips and depths of the fault planes bounding the abyssal hills are unknown. Given these uncertainties, there are two possible scenarios: (1) if the dips of the inward-facing abyssal hill faults in the upper 1 km are shallow or listric, or if the LVV top is wider than the depicted width (closer to the imaged width of the LVV top at 9°30’N), then the subseafloor inward-dipping fault planes of the youngest abyssal hills extend to the region above the melt-bearing LVV beneath the axial high; (2) if the inward-dipping fault plane dips are steep, then the fault planes essentially bound the margins of the LVV model. In both scenarios, hydrothermal circulation taps heat from the LVV, and fluids at the abyssal hill sites are conductively cooled products of basalt interaction (± phase separation) from high temperature source regions proximal to the LVV.

[45] Figure 15 illustrates the possible source regions for fluids emitted at the ridge axis and from the youngest abyssal hills. The depths of abyssal hill hydrothermal fluid sources are depicted ambiguously (dashed) since these depths depend on the unknown dips and depths of the fault planes. The broadening of the LVV below the Moho proposed by Dunn et al. [2000] suggests that cooling of the edges of the LVV extends to the base of the crust and takes place in a very narrow region adjacent to the axial high. However, there is no independent evidence that brittle faults so close to the axial high extend to near the Moho. Furthermore, to cool the LVV margin to great depth in such a narrow zone adjacent to the axial high requires a very large hydrothermal flux from the youngest abyssal hills, a circumstance for which there also is insufficient evidence. We note that the Tevnia and Ochre Site hydrothermal mineral assemblages are identical, suggesting that the two deposits precipitated from fluids that are chemically and thermally indistinguishable despite their locations on opposing scarps bounding both sides of the hill. This most likely means that (1) fluids ascending along the western fault zone also migrated laterally through the porous upper lava flows of the hill to vent from the eastern side of the hill and/or that (2) ridge-parallel hydrothermal convection down to the brittle/ductile transition takes place along both inward- and outward-facing ridge flank faults, and mines heat from a wider zone at the LVV margin than the Dunn et al. [2000] model suggests. Figure 15 is different from most 2-D conceptual figures of mid-ocean ridge fluid flow that have been published because, as required by our observations, it shows faults adjacent to the axial high as fluid up-flow zones rather than fluid down-flow zones. In three dimensions, we expect that ridge-parallel faults are permeable conduits for both down-flow and up-flow, and that they channel a significant component of ridge-parallel fluid flow. The extent to which these faults serve as channels for ridge-perpendicular flow is unknown.

11. Implications for Episodicity and Longevity of Fluid Flow

[46] A complicated history of brecciation, alteration, cementing, re-brecciation, and recementing is evident in the hydrothermal samples from Tevnia Site. In thin section, at least three generations of brecciation formed by hydrothermal cementation are observed. These petrographic relationships appear to record pulses of hydrothermal discharge following punctuated tectonic events. The colonies of undisturbed tube worm tubes and the live microbial mats on the western fault scarp lead us to suggest that these deposits have been continually forming over an extended period of time that included a relatively recent episode of hydrothermal venting. The inclusion of pelagic sediment throughout the matrices of the deposits further supports an extended period of formation, requiring enough time to incorporate material from the steady, slow rain of biogenic fallout through the water column.

[47] The throw on the western fault scarp is at least 200 m (more if lava flows from the ridge axis have
dammed against the base of the scarp ([Macdonald et al., 1996]). Since the lithosphere at this site is 100,000 years old, an average uplift rate of at least 2 mm/year is required to produce the observed throw. Earthquakes recorded on the EPR flanks are typically small (<M5), and therefore we assume that vertical displacements for each slip event on abyssal hill faults also are small, on the order of a few centimeters. If the average uplift rate is 2 mm/yr, then slip on the western fault repeats on a decadal timescale. Additionally, frequent and sometimes large (>M6) earthquakes are generated from slip along the nearby Clipperton Transform fault. Haymon et al. [2005] proposed that young, actively uplifting EPR abyssal hills experience frequent seismically triggered episodes of hydrothermal fluid flow, in response to hydraulic fluid pulses [Wilcock, 2004] and to shaking that opens mineral-clogged fluid flow paths. In this way, abyssal hill hydrothermal systems may be activated semicontinuously over tens to hundreds of thousands of years until the hills cease active uplift and spread away from the seismicity of the plate boundary zone. Our evidence for multiple hydrothermal cementation events on the fault scarp at Tevnia Site supports this proposal, as do direct observations of changes in the fluid flow rates and compositions of marine and terrestrial springs before and after earthquakes [Johnson et al., 2001; Sohn et al., 1998; Wilcock, 2004; Claesson et al., 2004].

12. Summary of Observations and Conclusions

12.1. Summary of Observations

On the basis of the mineral and chemical content, morphology, and petrographic relationships observed in samples of the mineral deposits at Tevnia and Ochre Sites, and the types of vent fauna observed at the sites, constraints have been placed on hydrothermal fluid composition and sources, temperatures of mineral formation, and characteristics of the depositional environment. Principal observations made in this study are as follows:

1. Petrographic observations show that the Tevnia Site mineral deposits are breccias with hydrothermal, volcanic, sedimentary, and fossil fauna components that exhibit at least three generations of cracking and cementation. The Ochre Site samples are pure hydrothermal encrustations formed on a basaltic seafloor substrate.

2. The hydrothermal component of samples from both sites is composed of: x-ray amorphous opaline silica and hydrous Fe-oxide phases, crystalline Mn-oxides (birnessite and todorokite), irregular mixed-layer Fe-smectite-mica (nontronite-celadonite), and calcite (residual from sedimentary microfossils in matrix). A distinctive mineral zonation is evident in these samples: (bottom/interior) mixed layer nontronite-celadonite → (middle) hydrous Fe-oxide and opaline silica → (upper/exterior) Mn-oxide. Observed textures, minerals, and microfossils in the EPR abyssal hill samples, combined with the absence of copper and zinc minerals, clearly distinguishes these samples from inactive high-temperature (>250°C) hydrothermal vent deposits found on the EPR axis.

3. Intact tubes from Tevnia tube worms, a vent-endemic species that colonizes active vent sites on the EPR crest, were found at both sites. Dive video shows extensive mossy microbial mats attached to the exposed volcanic substrate at both sites. Other live fauna observed or photographed include galatheid crabs, shrimp, and colonial “dandelions”. Fossil fauna that are observed at the sites, or are preserved by hydrothermal minerals in thin sections, include a bivalve shell (possibly a Calyptogena clam), filamentous microbes, and both planktonic and benthic foraminifers.

12.2. Summary of Implications and Conclusions

1. Petrologic evidence suggests that the mineral deposits at Tevnia Site accreted on the exposed fault scarp during repeated episodes of faulting and subsequent fluid discharge as the abyssal hill was uplifted, sedimented, and moved off-axis. Presence of intact worm tubes and live microbial mats at both sites indicates that the most recent episode had waned only months before the sites were visited in 1994. We propose that young abyssal hill hydrothermal systems flow intermittently in response to frequent (decadal) seismic events repeated over time periods of 10³–10⁵ years, until the hills stop growing and move out of the active plate boundary zone.

2. Mineral assemblages and elemental compositions of the deposits reflect precipitation from K-, Si-, and metal-enriched hydrothermal fluids that likely were derived from high-temperature seawater-basalt interaction proximal to the axial melt zone. Possibly, abyssal hill faults tap residual ridge crest brines that previously have undergone: phase separation plus loss of a conjugate vapor phase;
conductive cooling to temperatures \(<150^\circ C\); and, loss of Cu and Zn sulfides within the seafloor prior to venting. These fluids may contribute to formation of the earliest celadonitic alterite assemblage observed in oceanic crust [Alt, 1995; Alt and Teagle, 2003].

[53] 3. If the fluid source for the Tevnia and Ochre Sites lies above the melt zone beneath the ridge crest, fluid flow perpendicular to the ridge axis is required; if the fluid source resides beneath the ridge flank alongside the melt zone, ridge parallel convection along ridge flank faults is possible. Ridge parallel convection along abyssal hill faults would facilitate heat advection and chilling along the edges of the axial melt zone within the crust, as previously proposed by others [McClain et al., 1985; Dunn et al., 2000].

[54] 4. Fe-Si-Mn deposits are a distinctive petrologic class of marine hydrothermal deposits that form in basalt-hosted, fault-controlled hydrothermal systems at moderate to low temperatures. This class of deposits is found on spreading ridges and ridge flanks throughout the world ocean (see Table 5), and also is common in the volcanic sections of ophiolites. Given the diversity of environments where these hydrothermal deposits have been reported, and the magnitude of estimated hydrothermal heat loss from 0.1–5 Ma abyssal hill terrain, it seems likely that young abyssal hill hydrothermal fluxes significantly impact global geochemical budgets. More exploration of abyssal hills on ridge flanks is required to estimate the geographic distribution and average chemistry of vents, and the magnitude of geochemical fluxes from abyssal hill hydrothermal systems.

[55] 5. If young abyssal hills host widespread hydrothermal systems that are seismically rejuvenated by earthquakes at frequent (decadal timescale) intervals, these systems may be important to deep-sea hydrothermal biota, allowing larva of hydrothermal vent animals to disperse across the mid-ocean ridge, as well as along the ridge crest. The microbes inhabiting the subseafloor biosphere on ridge flanks may be contiguous with the microbial biosphere on the ridge crest, and may be flushed out of abyssal hills by seismically triggered pulses of fluid flow [Haymon et al., 2005]. These exciting possibilities can and should be tested by future exploration of abyssal hills.

Acknowledgments

[56] We thank Ken Macdonald and Jeff Fox for providing us with the samples, dive data/images, and dive observations that were necessary to this study. We also thank Ken Macdonald, Chris Ehhardt, Doug Wilson, and Suzanne Carbotte for very helpful scientific discussions. Tessa Hill and Tim Shank generously assisted us with fauna identifications. We are grateful to Cris Little and Bob Embley for their thorough and constructive reviews of the original manuscript and to Cris Little for his assistance in fossil identification. This research was supported by National Science Foundation grants OCE-0002816 (to R. Haymon), OCE9816021 (to K. Macdonald), and OCE0324668 (to R. Haymon and K. Macdonald); NOAA-OE grant NA04OAR600049 (to R. Haymon and K. Macdonald); and an Office of Naval Research grant (to K. Macdonald and P. J. Fox).

References

Alt, J. C., and D. A. Teagle (2003), Hydrothermal alteration of upper oceanic crust formed at a fast-spread ridge: Mineral. chemical, and isotopic evidence from ODP Site 801, Chem. Geol., 201, 191–211.

Emerson, D., and C. L. Moyer (2002), Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition, Appl. Environ. Microbiol., 68, 3088–3093.

