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A growing set of data indicates a stark contrast between the evolution of two types of ultrahigh-pressure
(UHP) terranes: large terranes that evolved slowly (over 10–30 Myr), and small terranes that formed and
were exhumed on timescales of b10 Myr. Here we compare the characteristics – area, thickness, formation
rate, exhumation rate, age, and tectonic setting – of these two endmember types of UHP terrane worldwide.
We suggest that the two UHP terrane types may form during different orogenic stages because of variations
in the buoyancy and traction forces due to different proportions of subducting crust and mantle lithosphere
or to different rates of subduction. The initial stages of continent collision involve the subduction of thin con-
tinental crust or microcontinents, and thus tectonic forces are dominated by the density of the oceanic slab;
subduction rates are rapid and subduction angles are initially steep. However, as collision matures, thicker
ultrahigh-pressure

continental subduction
collision
and larger pieces of continental material are subducted, and the positive buoyancy of the down-going slab

subduction angles become gentle and convergence slows. Assessing the validity
to understanding the physical and chemical evolution of Earth's crust and mantle.
orogenesis

becomes more prominent;
of this hypothesis is critical
1. Introduction

Regionally extensive exposures of coesite- and/or diamond-
bearing rocks are referred to as ultrahigh-pressure (UHP) terranes.
Since the discovery of coesite in metamorphic rock more than
25 years ago (Chopin, 1984; Smith, 1984) revolutionized our under-
standing of plate tectonics, the number of recognized UHP terranes
has increased to more than 20 (Liou et al., 2004; Rumble et al.,
2003). With this recognition, our understanding of how subduction
and exhumation of continental material influence the growth and
decay of mountain belts, the modification of continental crust, the
geochemical evolution of the mantle, and the forces acting on tectonic
plates has dramatically increased. Although UHP terranes are postu-
lated to form in a range of tectonic settings, including subduction
erosion (Stoeckhert and Gerya, 2005), intracontinental shortening
(Pysklywec et al., 2000), and lithospheric rifting (Little et al., 2011),
most are presumed to represent once-subducted microcontinents or
continental margins (Liou et al., 2004).

With few exceptions, data on the age, size, thickness, and resi-
dence time (here chosen as the period of time at greater than mid-
pes of UHP terrane: i)
ted and exhumed) ter-
es (Table 1). The oldest
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exposed UHP terranes are 620 Ma (Jahn et al., 2001), and active oro-
gens contain UHP terranes as young as 8 Ma (Baldwin et al., 2004).
The areal extent of UHP terranes – here taken to be the area of UHP
and contiguous HP eclogite-facies rocks (or amphibolite-facies rocks
hosting eclogite) – ranges from >20,000 km2 to b50 km2. UHP ter-
ranes were originally all assumed to be thin (b10 km; Ernst, 2006);
however, a number of thick (≥10 km) UHP terranes have been recog-
nized (Hacker et al., 2000; Root et al., 2005).

Geochronologic data indicate rapid (b5 Myr) exhumation of most
UHP terranes (Hacker et al., 2003; Parrish et al., 2006; Root et al.,
2005; Rubatto and Hermann, 2001; Zheng et al., 2003), but a few
UHP terranes were exhumed long after reaching peak depths
(Gilotti et al., 2004; Hacker et al., 2000; Kylander-Clark et al., 2008).
Subduction rates and residence times are less well constrained, but
some were demonstrably short (b15 Ma; Amato et al., 1999; Lapen
et al., 2003; Parrish et al., 2006)—and some demonstrably long
(>20 Ma; Hacker et al., 2006; Kylander-Clark et al., 2007, 2009;
Mattinson et al., 2006; McClelland et al., 2006).

This paper categorizes the better-known UHP terranes into these
two main types, and suggests possible orogenic processes and tecton-
ic environments that may have produced this duality.

2. Small vs. big UHP terranes

UHP terranes with well-studied P–T–t paths, such as the Dabie–

Sulu terrane of eastern China, the Western Gneiss region (WGR) of
Norway—both of which are large terranes – and the Dora Maira
massif of the western Alps—a small terrane – are used to characterize
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the two types of endmembers. A summary of these terranes is given reached eclogite-facies conditions by ~245 Ma and was exhumed to

Table 1
Characteristics of well-studied ultrahigh-pressure terranes.

Terrane Minimum volumea Peak UHP
age (Ma)c

Lower-crustal
age (Ma)d

Mid–upper
crustal age (Ma)e

Subduction
duration (Myr)f

Exhumation
duration (Myr)

Total
duration
(Myr)g

Areab (km2) Thickness (km)

Lago Cignana1 b500 (2) 0.3 40.6±2.6 n/d 38±2 ~8 ~2 ~10
Kaghan Valley2 b1000 b5 46.4±0.1 n/d 44.1±1.0 7–9 ~2 9–11
Papua New Guinea3 4000 n/d 7.9±1.9 ~3.5 ~1.5 n/d ~4 >4
Tso Morari4 5000 b15 53.3±0.7 47±11 48±2 n/d ~5 >5
Dora Maira5 500 (50) 1 35.4±2.7 32.9±0.9 31.8±0.5 n/d ~4 >4
Erzgebirge6 2500 (1) 3 336.8±2.8 330.2±5.8 340–330 n/d b7 n/d
Kokchetav7 b1500 b2 ~533 528±8 ~529 n/d ~6 >6
Greenland8 40,000 (>40) >5 364±8 342±6 ~329 n/d ~35 >35
Qaidam9 25,000 n/d 446–423 n/d 401.5±1.6 >13 >21 ~58
Western Gneiss Region10 30,000 (5,000) >15 405–400 ~390 385–375 >20 >15 >35
Dabie–Sulu11 30,000 (10,000) >10 245–222 222–210 200–180 >12 >20 ~45

For justification of reported ages, see discussion at end of Table A.1
1) Amato et al., 1999; Lapen et al., 2003; 2) Kaneko et al., 2003; Parrish et al., 2006; 3) Monteleone et al., 2007 ; 4)de Sigoyer et al., 2000; Leech et al., 2007; 5) Gebauer et al., 1997;
Henry et al., 1993; Rubatto and Hermann, 2001; 6) Kröner andWillner, 1998; Massonne et al., 2007; Werner and Lippolt, 2000; 7) Hacker et al., 2003; Hermann et al., 2001; Kaneko
et al., 2000; Shatsky et al., 1999; Yamamoto et al., 2000 ;8) Gilotti and Krogh Ravna, 2002; Gilotti et al., 2004; McClelland et al., 2006; 9) Mattinson et al., 2006; Song et al., 2006;
10) Kylander-Clark et al., 2007, 2008, 2009; Root et al., 2005; 11) Hacker et al., 2000, 2006. For a complete list of data, references and explanations for the dataset presented in this
table, see Table A.1.

a Because not all terranes are horizontal and well exposed, area x thickness provides a minimum volume estimate.
b Area containing eclogite-facies (i.e., HP) outcrops (area within HP unit that contains confirmed UHP outcrops in parentheses).
c U–Pb zircon, Lu–Hf garnet, or Sm–Nd garnet ages of eclogites that contain evidence of UHP conditions (e.g., inclusions of coesite).
d U–Pb zircon or titanite or Sm–Nd garnet ages interpreted to represent amphibolite-facies metamorphism.
e Reflects mid-crustal cooling through ~400 °C (e.g., 40Ar/39 Ar muscovite, U–Pb rutile).

f Difference between the oldest HP ages interpreted as prograde and the oldest ages interpreted as UHP.
g Difference between the earliest HP age and the mid-crustal age.

116 A.R.C. Kylander-Clark et al. / Earth and Planetary Science Letters 321-322 (2012) 115–120
in Table 1 and Fig. 1, and a detailed discussion of the >150 studies
represented herein is in Supplementary Table A.1. Eclogite-facies
rocks in the Dabie–Sulu terrane cover ~30,000 km2—of which
10,000 km2 are UHP (Hacker et al., 2006); geologic maps, cross sec-
tions, and seismic profiles suggest that the (U)HP unit is at least
10 km thick (Hacker et al., 2000; Wang et al., 2000). The terrane
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Fig. 1. UHP terrane size versus formation duration.Well-studied UHP terranes define
two separate groups: those that are large and spent a long time at depth, and those
that are small and spent a relatively short period at depth. Symbol shading indicates
terrane age (darkest are oldest). Where data are available, the time spent for terrane
burial is shown with open symbols and the time spent for terrane exhumation to
mid-crustal levels is shown with filled symbols (See Table 1). ‘Size’ refers to the area
of exposed eclogite-facies rocks, which includes HP and UHP rocks.
mid-crustal levels by ~220–200 Ma (U–Pb, Lu–Hf, Sm–Nd ages, and
40Ar/39Ar ages; Hacker et al., 2009; Zhang et al., 2009); HP conditions
lasted for more than 25 Myr. The WGR, exposing ~30,000 km2 of
eclogite-facies rocks (UHP rocks underlie ~5,000 km2; Root et al.,
2005), spent more than 25 Myr at HP conditions: subduction began
prior to ~425 Ma (Lu–Hf garnet ages; Kylander-Clark et al., 2007),
and the UHP terrane was exhumed to mid-crustal levels by
400–380 Ma (40Ar/39Ar muscovite ages; Root et al., 2005). The
lengthy isothermal decompression, particularly of the UHP rocks,
implies that the WGR was >15 km thick (Kylander-Clark et al.,
2009). The Dabie–Sulu and Western Gneiss region UHP terranes
thus exhibit similar characteristics: both are exposed in inactive oro-
gens, spent a relatively long time at high pressure (>20 Myr), are ex-
posed over large areas (>20,000 km2), and are thick (≥10 km). In
contrast, the UHP terrane in the Dora Maira massif spent only
3.3±1.3 Myr at depth (U–Pb zircon and titanite; Gebauer et al.,
1997; Rubatto and Hermann, 2001), is thin (~1 km), and UHP rocks
represent only ~50 km2 of a b500 km2 eclogite-facies unit (Henry
et al., 1993) in an active orogen.

Other less-studied UHP terranes exhibit characteristics similar
to these better-known endmembers (Table 1, Fig. 1, Table A.1). For
example, the North-East Greenland Eclogite Province (NEGEP;
>15 km thick) and the Qaidam UHP terrane (unconstrained thick-
ness) are large (>25,000 km2) and spent a long time at depth
(>20 Myr). Conversely, the Papua New Guinea, Lago Cignana, Tso
Morari, and Kaghan Valley (U)HP localities underlie small areas
(b5000 km2), were subducted and exhumed over short periods
(b10 Myr), are b3 km thick, and crop out in active orogens. There
may be some UHP terranes that cannot be neatly shoe-horned into
either of these endmembers: the Erzgebirge unit in the Bohemian
Massif and the poorly exposed Kokchetav UHP terrane are old
(~340 Ma and ~535 Ma, respectively), but current data indicate that
their size, thickness, and exhumation rate are similar to small UHP
terranes (Table 1). These terranes are discussed further below. Not
discussed are numerous other UHP terranes – such as those in
Rhodope, Greece, Central Europe (parts of the Variscan orogen other
than the Erzgebirge), and Brazil and Mali (the Pan-African orogen) –

whose tectono-chronologic framework is less well constrained because



of poor exposure, a dearth of data, and/or post-(U)HP overprinting

the entire body internally such that buoyancy forces overcome the
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Fig. 2. Two types of UHP terrane formation: early versus late.The transition from oce-
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events.
In summary, most UHP terranes can be categorized into one of

two groups: i) small, thin, young, and fast (rapidly subducted and
exhumed), and ii) large, thick, old, and slow (slowly subducted
and exhumed). Recognizing this duality (Kylander-Clark et al.,
2009) has been a significant step forward, but the cause of the
duality remains unclear.

3. Early vs. mature orogenic stage model

Did fundamentally different geodynamic/tectonic process(es)
produce this bimodal set of UHP terranes? Although differences in
metamorphic PT gradients (Brown, 2008), igneous rock abundances
(e.g., TTG–anorthosite–Rapakivi suites), ophiolite outcrops, and
accretionary-wedge outcrops (Hamilton, 2011) imply that plate
tectonics may be an exclusively late Proterozoic–Phanerozoic phe-
nomenon, it is unlikely that major changes in plate tectonics since
the latest Proterozoic (the earliest recognized UHP rocks; Jahn et al.,
2001) are responsible for producing these two types of UHP terrane.
Secular cooling would have meant warmer early subduction, leading
to slower, hotter subduction of smaller continental slivers (Pollack,
1997; Sleep, 2000); and colder late subduction, leading to faster,
colder subduction of larger continental slivers. This expectation is
inconsistent with the observations (Fig. 1).

As an alternative, we hypothesize that small, thin, young, and fast
UHP terranes formed early during orogeny, and large, thick, old, and
slow UHP terranes formed during the end of orogeny. This hypothesis
fits the observations for both groups of terranes, allows for the ex-
ception noted above, and has significant impact on our understanding
of the effects that UHP tectonism has on a variety of geologic pro-
cesses. Our rationale is as follows: the transition from oceanic to con-
tinental subduction results in reduced subduction angle and slower
vertical subduction velocity. The buoyant crustal material and the
thicker, stronger continental lithosphere are entrained in the sub-
duction zone and counteract the negative buoyancy of the dense
oceanic lithosphere (Billen and Hirth, 2007; Sobouti and Arkani-
Hamed, 2002). As the volume of the subducted continent increases,
the subduction angle and plate velocity continue to decrease. This re-
duction in subduction angle and plate velocity provides a mechanism
to explain the two types of UHP terrane (Fig. 2). During the early
stages of continent collision – characterized by subduction of a micro-
continent or thinned continental margin – subduction forces are
dominated by oceanic lithosphere and subduction is likely fast and
steep; UHP terranes formed in such settings are small and subducted
and exhumed quickly. During the mature stages of continent collision –

characterized by subduction of normal continental lithosphere –

subduction is slower and the subduction angle gentler; such settings
produce large UHP terranes that form over longer periods of time.

Because exhumation rate has commonly been tied to the positive
buoyancy of subducted terranes (Ernst and Liou, 2008), one might
expect that large terranes should exhume more rapidly than small
ones. The opposite appears to be true, however (Fig. 1), and one or
more factors may be responsible. If large and thick terranes remain
attached to thick (typical continental) lithosphere, they may be less
buoyant than small and thin terranes attached to the thinned litho-
sphere typical of continental margins. In addition, during mature
stages of orogenesis, continent collision produces overthickened
crust, which may arrest the rise of a UHP terrane at Moho depths
(lower-crustal age in Table 1), prolonging the exhumation period
(Walsh and Hacker, 2004). This ‘Moho arrest’ is indicated for many
UHP terranes, which appear to have a two-stage exhumation history
in which an initial fast exhumation to ~1 GPa is followed by slower
exhumation to the surface (Rubatto and Hermann, 2001). Large
UHP terranes may also spend more time at peak depths because
their greater thickness requires a longer period of heating to weaken
boundary tractions (Warren et al., 2008). Furthermore, if the UHP
terrane follows the same low-angle path during exhumation as it
did during subduction (Ernst and Liou, 2008), larger terranes will
take longer to travel vertically.

This ‘early vs. mature’ hypothesis makes predictions about UHP
terrane characteristics:

1) Orogens in which a continental margin has recently begun to
subduct, such as the subduction of northern Australia beneath
the Banda Arc (Elburg et al., 2004), should have small, actively
forming UHP terranes that will be exhumed in a few Myr.

2) Active, mature orogens, such as the Alpine–Himalayan chain,
should contain small UHP terranes exhumed rapidly during the
early stages of orogeny, and large, buried UHP terranes that
formed – or are forming – slowly. The Alpine–Himalayan orogen,
where convergence is currently much slower than at the onset
of collision (Guillot et al., 2003), does not reveal strong evidence
of continental crust at UHP depths (Tilmann et al., 2003), but
this does not preclude the presence of an incompletely exhumed
UHP terrane in the lower crust (Walsh and Hacker, 2004). That
terrane may not reach the surface for another 20 Myr, thus
explaining why large UHP terranes are absent from active orogens.

3) Ancient orogens with large, slowly formed UHP terranes should
also contain – or at one time have contained – older, rapidly
formed, small UHP terranes. The early exposure and small size of
early UHP terranes would subject them to more erosion com-
pared to large terranes. The preferential erosion of small terranes
would reduce the abundance of ancient small UHP terranes.
Nevertheless, some may exist: the ~450 Ma Jämtland HP region
(Brueckner and van Roermund, 2007), several hundred km east
of the ~425–400 Ma Western Gneiss Region UHP terrane in
Norway may be a prime example of a previously subducted con-
tinental sliver (as of yet, there is no evidence for UHP). In fact, it
was the ~50 Myr age difference between these (U)HP terranes



that prompted Brueckner and Van Roermund (2004) to coin the

spend exhuming. At present, no correlation between degree or type

4. Conclusions
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term “dunk tectonics,” to describe the successive subduction and
exhumation of continental slices during a single orogenic cycle.
The ‘early vs. mature’ model predicts that these events occurred
at subduction rates successively slowed by increasingly larger
volumes of continental material. The Kokchetav and Erzgebirge
UHP units may also be good examples of early subducted UHP ter-
ranes, but they are poorly exposed, dissected by younger faults
(Kokchetav), and have geochronologic data that do not define a
coherent picture (see Supplementary Table 1).

The model does not apply directly to UHP terranes that formed in
the upper plates of collision zones (e.g., the NEGEP; Gilotti and Krogh
Ravna, 2002), we expect those to be similar to other large, slowly
formed terranes. The upper plate is thick, and thus buoyant, and, as
is the case with Greenland, subducted during the later stages of oro-
genesis (Gilotti and McClelland, 2007).

3.1. Outstanding questions

The ‘early vs. mature’ model has limitations in explaining a num-
ber of characteristics of UHP terranes, such as the degree of reaction
progress (both on the prograde and retrograde path) and the P–T
paths, as well as the relative abundance and exposure of each end
member type of terrane.

Retrogression is ubiquitous in UHP terranes and obscures peak
metamorphic conditions. However, even terranes that spent
>20 Myr at mantle depths preserve incomplete prograde reactions
(Austrheim, 1987; Zhang and Liou, 1997)—presumably governed by
fluid availability, deformation, and duration of metamorphism
(Mosenfelder et al., 2005). One might expect small UHP terranes to
be more retrogressed simply because of their low surface:volume
ratio, but this may be compensated by the short time that they
of metamorphic overprint (e.g., greenschist-facies vs. granulite-
facies) and terrane size has been noted.

One might also expect that the thermal evolution of the two
types of UHP terrane would be different, though no distinction can
be drawn from the current dataset (Fig. 3). Heat conduction dis-
tance scales with the square root of time (x∝2

ffiffiffiffiffi

κt
p

), such that a ter-
rane with a subduction/exhumation cycle time of 20 Myr will be
less affected by external temperatures if it is more than ~3× thicker
than one with a subduction/exhumation cycle time of 2 Myr. This
effect is offset by radiogenic heating, however, which would be
minor, ~40 °C, for a 3 Myr subduction/exhumation cycle, but sig-
nificant, 250 °C, for a 20 Myr cycle (these are maxima, assuming
no heat loss and a heat production rate of 1 μW/m3). Thermal-
mechanical modeling can help test the proposed model; results
thus far have been variable (Gerya et al., 2002; Warren et al., 2008).

As shown in Fig. 1 and Table 1, more small, rapidly evolved UHP
terranes have been recognized than large ones. This may be partly
attributed to the increased chance for subduction of a microconti-
nent or continental margin over the subduction of a continental in-
terior. The subduction of thick portions of continental lithosphere
may also require a more specific set of requirements – such as a
large minimum dimension or a large attached oceanic slab –

which, if not met, would otherwise lead to a stall or reversal of sub-
duction and produce only a small UHP terrane. It is also possible
that, given the long time that large UHP terranes spend at depth,
they are more likely to be overprinted and thus recognized less
often. As stated earlier in this section, no correlation between the
size of a terrane and the degree of retrogression yet exists. The oc-
currence of small and large UHP terranes could also simply be relat-
ed to their size; the current estimate for the total volume of large
terranes far exceeds that of small ones. Whereas many small, dis-
sected terranes may form at the onset of continental subduction
through the subduction of lobate continental boundaries or micro-
continents, once interior portions of continents become subducted,
the volume of subducted material is greater.
Ultrahigh-pressure terranes define two groups: terranes that are
small, thin and subducted and exhumed rapidly, and terranes that
are large, thick, and subducted and exhumed slowly. The former
may be created during the early stages of continental subduction
when the volume of negatively buoyant, subducted oceanic litho-
sphere, and, thus, forces that pull the subducting lithosphere down
prevail; rapid, steep-angle subduction results. The latter may form
during the later stages of continent collision when subduction of
thick, positively buoyant continental lithosphere leads to slow,
gentle-angled subduction. Assessing whether this hypothesis is cor-
rect – by looking in detail at both poorly and well studied UHP ter-
ranes – is important for understanding large-scale Earth evolution,
such as the physical and chemical processes that produced and mod-
ified Earth's crust.
This work was supported by NSF grants EAR-0607775 and EAR-
0838269 to B.R.H.
Supplementary data to this article can be found online at doi:10.
1016/j.epsl.2011.12.036.
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