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ABSTRACT

The formation of the vast Devonian 
ultrahigh-pressure terrane in the Western 
Gneiss Region of Norway was investigated by 
determining the relationship between these 
ultrahigh-pressure rocks and the structur-
ally overlying oceanic and continental Köli 
and Seve Nappes in the Trondelag-Jämtland 
region. Thermobarometry and thermochro-
nology reveal that the oceanic Köli Nappes 
reached peak conditions of 9–10 kbar and 
550–650 °C prior to muscovite closure to 
Ar beginning at ca. 425 Ma. The continental 
Seve Nappes attained slightly higher pres-
sures and temperatures (~11–12 kbar and 
700–725 °C) and closed to Ar loss in musco-
vite by 415 Ma in the east and by 400 Ma in 
the west. In contrast, the ultrahigh-pressure 
rocks were still deep in the mantle at eclogite-
facies pressures at 410–400 Ma. These data, 
in combination with structural, petrological, 
and thermochronological data from else-
where in the orogen, show that the ultrahigh-
pressure metamorphism occurred in the 
late stages of continental collision, after the 
earlier stages of ophiolite emplacement and 
passive-margin subduction.

Keywords: ultrahigh-pressure, Barrovian, 
continental collision, argon geochronology, 
Scandinavian Caledonides.

INTRODUCTION

Ultrahigh-pressure (UHP) terranes, charac-
terized by the presence of regional metamorphic 
coesite (pressures ≥27 kbar), are widely equated 
with the collisions between continents—but to 

what extent is this paradigm correct? Conti-
nent-collision orogens form through a series of 
stages involving (1) early arc ophiolite emplace-
ment and continental passive margin contraction 
(typifi ed by the modern Australia-Banda arc 
collision) and subsequent relaxation (typifi ed by 
Oman), (2) emplacement of oceanic sediments 
and telescoping of the ophiolite-on-passive-
margin assemblage, (3) emplacement of the 
upper-plate continent with its Andean-style arc, 
and (4) plateau formation and intracontinental 
shortening (e.g., Tibet–Pamir). Can UHP ter-
ranes form during all of these stages, as implied 
by Searle et al. (2001)?

This question can be profi tably addressed in 
the Scandinavian Caledonides, an archetype oro-
genic belt composed of thin, laterally extensive, 
far-traveled nappes or thrust sheets (Törnebohm, 
1888) and three or four HP to UHP provinces of 
different ages (Brueckner and Roermund, 2004). 
We focus on the UHP province formed during 
the 430–390 Ma Scandian orogeny—either the 
largest or second largest on Earth (Ernst, 2001). 
These UHP rocks might be a result of early arc 
ophiolite emplacement (case 1 above), but the 
latest ophiolite emplacement onto Baltica also 
happened 10–20 m.y. before ultrahigh pressures 
were attained. They might be a result of passive 
margin subduction during the initial stages of 
continental collision (case 2 above), but sedi-
mentological (Soper et al., 1992) and paleomag-
netic (Torsvik et al., 1996) studies suggest that 
the collision between Baltica (Norway–Swe-
den) and Laurentia (Greenland–eastern North 
America) began as much as 20–35 m.y. before 
the UHP metamorphism. Perhaps they formed 
as a result of intracontinental subduction, like 
the Hindu Kush (case 4 above?).

The purpose of this paper is to examine pos-
sible cause-and-effect relationships between 
Scandian UHP tectonism and the emplace-
ment of oceanic and continental thrust sheets 
onto the Baltica continental margin. We 

review the petrology and geochronology of 
the major thrust sheets and then present new 
thermobarometry and thermochronology from 
a key section inboard of the UHP terrane. We 
conclude that the largest Norwegian UHP ter-
rane formed in the end stages of the continental 
collision, following ophiolite emplacement and 
passive margin subduction. Throughout, we use 
the time scales of Tucker and McKerrow (1995) 
and Tucker et al. (1998).

THE SCANDINAVIAN CALEDONIDES

The Scandinavian Caledonides are conven-
tionally subdivided into a number of structurally 
defi ned units: the autochthon, Lower Alloch-
thon, Middle Allochthon, Upper Allochthon, 
and Uppermost Allochthon (Roberts and Gee, 
1985) (Fig. 1). The autochthon consists of Pre-
cambrian Baltica basement overlain by Vendian 
through Upper Silurian sedimentary rocks. The 
Lower Allochthon is composed of metasedi-
mentary and crystalline rocks, compositionally 
similar to the autochthon, that have been thrust 
east-southeastward over the autochthon. In the 
more deformed and metamorphosed core of 
the orogen, the Lower Allochthon contains the 
UHP signature of the Scandian orogeny. These 
UHP rocks recrystallized at pressures as high 
as 3.6 GPa at ca. 410–400 Ma (Cuthbert et al., 
2000; Terry et al., 2000a; Terry et al., 2000b; 
Carswell, 2001; Krogh et al., 2003; Root et 
al., 2004). The Middle Allochthon consists of 
crystalline and sedimentary rocks also inter-
preted to have been derived from Baltica, but 
from farther outboard than the autochthon. The 
Upper Allochthon consists of continental rocks 
thought to represent the outermost margin of 
Baltica, plus ophiolitic rocks interpreted to 
represent chiefl y Iapetus Ocean lithosphere. 
The Upper Allochthon has been subdivided into 
many nappes; for the purposes of this study we 
group them into two simplifi ed units: the Köli 
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Figure 1. Geologic map of southwestern Scandinavian 
Caledonides, highlighting the Western Gneiss Region 
and nappes. Emplacement of the Uppermost, Upper, and 
Middle oceanic and continental-margin Allochthons is 
related to the ultrahigh-pressure metamorphism in the 
core of the orogen.
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and Seve Nappes ( Stephens and Gee, 1985). 
The Uppermost Allochthon is lithologically 
distinct from Baltica and is considered to be a 
fragment of Laurentia. This study focuses on the 
tectonic histories of the better-known nappes in 
the Trondheim region (Fig. 2) but draws on rela-
tionships across the Western Gneiss Region.

NAPPE TECTONOSTRATIGRAPHY, 
PLUTONISM, DEFORMATION, AND 
METAMORPHISM

Uppermost Allochthon

The Uppermost Allochthon is considered 
to be a fragment of Laurentia, based on C and 
Sr isotopic chemostratigraphy (Melezhik et al., 
2002; Roberts et al., 2002a), early NW-directed 
thrust faults (Roberts et al., 2001), and sedi-
mentary successions that are distinctly different 
from those of Baltica (Stephens and Gee, 1985). 
It is extensively intruded by the Bindal batholith 
and related plutons, which are inferred to have 
developed above a W-dipping subduction zone 
at 447–430 Ma by melting of diverse crustal 
and mantle rocks (Nordgulen et al., 1993). A 
UHP eclogite developed in Cambrian volca-
noplutonic arc rocks near Tromsø (Ravna and 
Roux, 2002) gave a 452 Ma zircon age (Corfu 
et al., 2002).

Upper Allochthon: Köli Nappes

The Köli Nappes are the uppermost nappes 
in the Trondheim region. Northeast of the study 
area, in Jämtland-Västerbotten (Fig. 3), the Köli 
Nappes are grouped into the Upper, Middle, and 
Lower Köli Nappes (Gee et al., 1985). There, all 
three nappes have foliated mafi c to felsic igne-
ous basement that has yielded Early Ordovician 
zircon ages of 492–476 Ma (see references 
in Fig. 3). In the Middle Köli Nappe (locally, 
the Stikke Nappe), this igneous suite postdates 
U-Mo-V-rich sedimentary rocks that have 
been correlated with Tremadoc (490–485 Ma) 
sedimentary rocks on the Baltica craton (Sun-
blad and Gee, 1984). The igneous rocks in all 
three Köli Nappes are intercalated with and 
depositionally overlain by calcareous turbidites, 
limestone, and volcanic rocks (Lutro, 1979; Ste-
phens and Gee, 1985). In the Lower Köli Nappe, 
the limestone is of Ashgill age (449–443 Ma), 
the same age as black shales exposed farther 
east on the autochthon (Stephens and Gee, 
1985). Three features have been interpreted to 
indicate that the Lower Köli Nappe formed on 
or near the Baltica continental margin: (1) The 
stratigraphy is similar to that of the Lower 
Allochthon, except for the presence of volcanic 
rocks; (2) some turbidites were derived from 

the east; and (3) the Lower Köli Nappe locally 
grades lithologically and structurally downward 
into the Seve Nappes (Stephens, 1980; Stephens 
and Gee, 1985).

Outcrops south of the study area near Otta 
(Fig. 1) reveal that older parts of the Köli Nappes 
were emplaced onto the Baltica margin prior to 
the late Arenig (Sturt and Roberts, 1991) before 
younger parts of the Köli Nappes had even 
formed. There, the MORB-affi nity Vågåmo 
ophiolite lies in fault contact on psammites and 
crystalline rocks interpreted as part of Baltica 
and is unconformably overlain by the Otta Con-
glomerate (Sturt and Roberts, 1991) that has a 
late Arenig–early Llanvirn (485–464 Ma) fauna 
of mixed Baltican–Laurentian affi nity (Bruton 
and Harper, 1981). This ophiolite-emplacement 
event caused the appearance of detrital chromite 
in upper Caradoc shales and limestones on the 
craton in the Oslo area (Bjørlykke, 1974).

In the study area (Figs. 2 and 3), the Köli 
Nappes have been divided into four units: the 
Støren, Meråker, Tännfors, and Gula Nappes. 
The Støren and Meråker Nappes begin with 
Early Ordovician 493–480 Ma mafi c and felsic 
igneous rocks (references in Fig. 3); rock asso-
ciations and geochemistry suggest that these 
early rocks of the Støren and Meråker Nappes 
represent mid-ocean ridge and intraoceanic 
arc rocks, respectively (Grenne et al., 1999). 
These rocks were deformed and unconform-
ably overlain (Bjerkgård and Bjørlykke, 1994) 
in the Meråker–Folldal area by turbidites and 
conglomerates (Liafjellet, Slågån, Kjølhaugen, 
and Sulåmo Groups) that include early–middle 
Llandovery (443–428 Ma) graptolites (Olesen 
et al., 1973; Hardenby, 1980; Lagerblad, 1984; 
Bassett, 1985; Gee et al., 1985); in the Hølonda 
area they are overlain by shoshonitic to calc-
alkaline volcanic rocks intercalated with shales 
and turbidites with late Arenig–early Llanvirn 
(485–464 Ma) fossils of mainly Laurentian 
affi nity (Nilsen, 1978; Bruton and Bockelie, 
1980), capped by Caradoc (458–449 Ma) black 
shales. The Gula Nappe consists of metasand-
stone, pelite, migmatitic gneiss, and calcareous 
phyllite with minor conglomerate, mafi c volca-
nic rock, and felsic volcanic rock, all intruded 
by trondhjemite-diorite-gabbro associations 
(Olesen et al., 1973; Nilsen, 1978; Size, 1979; 
Grenne et al., 1999; Pannemans and Roberts, 
2000). The clastic rocks have been interpreted to 
comprise turbidites (Singsås Formation; Nilsen, 
1978) and shallow marine deposits (Åsli For-
mation; Bjerkgård and Bjørlykke, 1994) from 
a continental margin or shelf (Grenne et al., 
1999). Two features suggest an affi nity with the 
Baltica craton: Tremadoc (490–485 Ma) fossils 
of Baltican affi nity (Spjeldnes, 1985) in a U-V-
Mo-rich graphitic phyllite (Gee, 1981). Volcanic 

rocks in the Gula Nappe are similar to the Upper 
Köli Nappe (Krutfjellet Nappe) in Västerbotten 
and Nordland (Stephens and Gee, 1985) and the 
Støren Nappe (Grenne et al., 1999). The Tänn-
fors Nappe (Fig. 2) has been correlated with the 
Lower Köli Nappe (Beckholmen, 1978).

The youngest volcanoplutonic sections of 
the Köli Nappes are marginal-basin ophiolites 
such as the Solund–Stavfjord (443 ± 3 Ma; 
Fig. 1) and Sulitjelma (437 ± 2 Ma; north of 
Fig. 1) (Boyle, 1980; Dunning and Pedersen, 
1988; Furnes et al., 1990; Pedersen et al., 1991). 
Formation of these ophiolites was accompanied 
by the intrusion of widespread ca. 445–432 Ma 
gabbroic to granitic, plutonic–hypabyssal bod-
ies in the Upper Köli Nappe (Gee and Wilson, 
1974; Senior and Andriessen, 1990; Pedersen 
et al., 1991; Stephens et al., 1993; Mørk et al., 
1997), Middle Köli Nappe (Claesson et al., 
1988; Tucker et al., 1990; Roberts and Tucker, 
1991), Støren, Meråker (Nilsen et al., 2003), 
and Gula (Berthomier et al., 1972; Dunning and 
Grenne, 2000; Nilsen et al., 2003) Nappes. (We 
include the poorly dated 426 +8/–2 Ma Fongen–
Hyllingen gabbro [Wilson, 1985] in this group.) 
The ca. 450–442 Ma Smøla-Hitra batholith (zir-
con ages of Tucker, 1988; Gautneb and Roberts, 
1989) is slightly older. Sedimentary deposits that 
apparently postdate this widespread magmatism 
include the upper Llandovery (443–428 Ma) 
Broken Formation (Bassett, 1985) in the Lower 
Köli Nappe, lacustrine deposits of the Limingen 
Group in the Middle Köli Nappe (Lutro, 1979), 
and possibly the Horg and Slågån Groups (Vogt, 
1945; Siedlecka, 1967) in the study area.

Upper Allochthon: Seve Nappes

The Seve Nappes are traditionally inter-
preted as late Precambrian to Cambrian rocks 
of the Baltoscandian continental margin to 
ocean–continent transition. However, much 
remains to be understood about their evolu-
tion; for example, whether they were actually 
attached to the rest of Baltica or were a rifted 
microcontinent is unknown. Their continental 
character is indicated by the dominance of mica 
schist, amphibolite, and quartzofeldspathic 
gneisses, and they have been suggested to be 
higher-grade equivalents of rocks within the 
Middle Allochthon (Dallmeyer, 1988); this cor-
relation is reinforced by the presence of 608 Ma 
crosscutting mafi c dikes (Svenningsen, 2001), 
similar to dikes of the Middle Allochthon.

Middle Allochthon

The Middle Allochthon consists of crystalline 
and sedimentary rocks interpreted to have been 
derived from the continental margin of Baltica. 
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In the study area, the Särv, Saetra, and Leksdal 
Nappes are composed of sandstones intruded by 
mafi c dikes (Gee et al., 1985; Roberts, 1988; 
Greiling, 1989), while sandstones without dikes 
compose the Offerdal, Kvitvola, and Dearka 
Nappes (Gee et al., 1985). The Tännäs, Risber-
get, and Jotun Nappes include a variety of domi-
nantly alkalic plutonic rocks (Gee et al., 1985).

Lower Allochthon

The Lower Allochthon is composed of 
weakly metamorphosed (Andréasson, 1980; 
Arnbom, 1980) sedimentary and subordinate 
crystalline rocks of the Baltica craton that were 
shortened and displaced east-southeastward 
over the autochthon (Gee et al., 1985; Gayer 
and Greiling, 1989). The sedimentary rocks 
include Neoproterozoic and Lower Cambrian 
sandstones overlain by Middle to Upper Cam-
brian black shales and local Lower Ordovician 
carbonates, shales, and graywackes (Garfunkel 
and Greiling, 1998; Greiling et al., 1998). 
Clastic deposition in the Lower Allochthon and 
autochthon migrated eastward, beginning in the 

Lower Allochthon with the Middle to Upper 
Ordovician Gausdal Formation, continuing with 
the deltaic upper Llandovery–Wenlock Brufl at 
Sandstone and ending with the Ludlow and 
younger, tidal to fl uvial, Ringerike Sandstone in 
the Oslo region (Bockelie and Nystuen, 1985).

Autochthon

The crystalline basement of the Fennoscan-
dian Shield is overlain by thin Vendian silici-
clastic rocks, Cambrian alum shale, Tremadoc–
Ashgill graywacke and shale, lower Llandovery 
shallow marine sandstone derived from the 
west, upper Llandovery limestone and black 
shale, upper Llandovery–lower Wenlock gray-
wacke, and lower(?) Wenlock fl uvial sandstone 
(Bassett, 1985; Gayer and Greiling, 1989).

PREVIOUS METAMORPHIC 
PETROLOGY

Understanding the P-T histories of the oce-
anic and continental allochthons is central to 
reconstructing the role of these thrust sheets 

in the Scandian orogen and in forming the 
UHP rocks. The Köli Nappes underwent both 
regional and contact metamorphism (Fig. 4). 
The Bymarka ophiolite of the Støren Nappe 
underwent ~9 kbar epidote-blueschist facies 
metamorphism in early Arenig time (ca. 
485–475 Ma) (Eide and Lardeaux, 2002). 
Regional Barrovian metamorphism in other 
Köli Nappes known to predate the 445–432 Ma 
intrusive event reached kyanite + staurolite + 
garnet (Stephens and Gee, 1985) and garnet + 
staurolite + biotite (Mørk, 1985) grade (Fig. 4). 
The 445–432 Ma intrusions then caused contact 
metamorphism (Birkeland and Nilsen, 1972). 
Scandian postintrusion regional metamorphism 
in the Köli is also Barrovian and spatially vari-
able in grade. In the study area, metamorphic 
grade increases westward within the Meråker 
Nappe from greenschist to amphibolite facies 
(Siedlecka, 1967; Dudek et al., 1973; Olesen et 
al., 1973; Lagerblad, 1984). The Fongen–Hyl-
lingen gabbro was foliated and metamorphosed 
to kyanite + garnet + staurolite + biotite (Wilson, 
1985). The lowest unit in the Fundsjø Group, the 
Gudå Conglomerate, shows garnet + staurolite 
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Figure 4. Pressure-temperature diagrams 
for Köli and Seve/Blåhø Nappes show early 
regional metamorphism older than ca. 
440 Ma, followed by contact metamorphism 
at ~3 kbar, and fi nal regional metamorphism 
at ~9 or ~12 kbar, respectively (pre–440 Ma 
metamorphism not shown). Stability fi elds 
of mineral assemblages reported previously 
are shown in shades of gray (from the pro-
gram “Gibbs” by Spear and Menard, 1989). 
Calculated P-T conditions from this study 
shown by ellipses depicting ±1σ absolute 
uncertainties and circles showing condi-
tions inferred from mineral assemblages; 
calculated apparent P-T paths from this 
study shown by thin arrows. Dashed line 
shows hypothetical P-T path connecting 1st 
regional metamorphism (defi ned by gray 
fi elds) with contact metamorphism (defi ned 
by SGC and SGK fi elds) with 2nd regional 
metamorphism (defi ned by ellipses). Diago-
nal ruling shows approximate closure tem-
peratures for hornblende and mica; corre-
sponding 40Ar/39Ar ages are shown at top of 
each panel. Field labels: GBC—garnet-bio-
tite-chlorite; GCC—garnet-chloritoid-chlo-
rite; GSA—garnet-sillimanite-andalusite; 
GSB—garnet-staurolite-biotite; KGB—kya-
nite-garnet-biotite; KGSB—kyanite-garnet-
staurolite-biotite; KSB—kyanite-staurolite-
biotite; KSG—kyanite-staurolite-garnet; 
SGB—sillimanite-garnet-biotite; SGC—sil-
limanite-garnet-cordierite; SGK—silliman-
ite–garnet–K-feldspar; SSG—sillimanite-
staurolite-garnet.
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+ biotite (Dudek et al., 1973) and kyanite + 
garnet + staurolite + biotite overprinted by silli-
manite (Lagerblad, 1984). The Tännfors Nappe 
is characterized by an inverted metamorphic 
gradient from greenschist to garnet-amphibolite 
facies, but the lowermost greenschist-facies unit 
underwent prograde metamorphism at the base 
to lower amphibolite facies (Dallmeyer et al., 
1985; Bergman and Sjöström, 1997). Garnet + 
chlorite + chloritoid grew in Jämtland, Väster-
botten, and Nordland (north of Fig. 1) during 
nappe emplacement (Stephens, 1980; Mørk, 
1985). The Gula Nappe shows inward increases 
in metamorphic grade from both the west and 
the east, beginning at the lowest grade with gar-
net + biotite + chlorite assemblages (Lagerblad, 
1984; Bjerkgård and Bjørlykke, 1994) (Fig. 4). 
In a northern part of the Gula Nappe near Snåsa, 
kyanite + garnet + biotite, kyanite + staurolite 
+ biotite, garnet + staurolite + biotite, and kya-
nite + garnet + staurolite + biotite ± sillimanite 
assemblages (Lagerblad, 1984) are overgrown 
by sillimanite + staurolite + garnet (Andréas-
son and Johansson, 1982).  Sillimanite + garnet 
+ biotite (Dudek et al., 1973) and sillimanite + 
garnet + K-feldspar (Lagerblad, 1984) migma-
tite in the Inndalen and Fongen areas are asso-
ciated with trondhjemite bodies (Dudek et al., 
1973; Olesen et al., 1973). In the southern part 
of the Gula Nappe (Folldal area), metamorphic 
grade reaches kyanite + staurolite + biotite(?) 
(Bjerkgård and Bjørlykke, 1994). Contact meta-
morphism around the Fongen–Hyllingen intru-
sion reached garnet + sillimanite + cordierite 
grade and predated the growth of regional kya-
nite + garnet + staurolite + biotite assemblages 
(Olesen et al., 1973); farther south Bøe (1974) 
reported this same secondary mineral assem-
blage replacing contact metamorphic andalusite. 
In the Dombås area, Guezou (1978) described 
kyanite + staurolite + biotite overprinting garnet 
+ staurolite + andalusite contact metamorphism. 
Isograds within the Gula Nappe cut lithologic 
boundaries (Dudek et al., 1973; Olesen et al., 
1973; Lagerblad, 1984; McClellan, 1994) and 
also cross into the Meråker Nappe, implying 
a premetamorphic juxtaposition of these two 
thrust sheets.

Evidence of a pre-Scandian orogeny in the 
Seve Nappes comes from geochronology and 
metamorphic petrology. An early high-pressure 
event is indicated by eclogites and garnet perido-
tites in lower thrust sheets of the Seve Nappes in 
Gäddede and Norrbotten (north of Fig. 1) (Nich-
olson, 1984; van Roermund, 1985; Santallier, 
1988; van Roermund, 1989; Kullerud et al., 
1990); we calculate pressures of 18–21 kbar and 
temperatures of 500–600 °C for this event using 
THERMOCALC and mineral compositions from the 
aforementioned studies. Two of these eclogites 

in Norrbotten yielded Sm/Nd isochrons of ca. 
503 Ma (Mørk et al., 1988), and titanite from 
calc-silicates in the same general area gave ages 
of 495–480 Ma (Essex et al., 1997). The eclog-
ites and garnet peridotites in Jämtland gave an 
age of ca. 450 Ma (Brueckner et al., 2004).

The Middle Seve Nappe in the Åre and 
Handøl areas shows an early low-pressure 
granulite-facies metamorphism in which silli-
manite + garnet + cordierite were stable (Fig. 4) 
(Arnbom, 1980; Sjöström, 1984), suggestive of 
contact metamorphism, large-scale extension, 
or rifting. This low-P metamorphism in the Åre 
and Handøl areas is overprinted by Barrovian 
metamorphism that produced kyanite + garnet 
+ staurolite + biotite in the Upper Seve Nappe, 
kyanite + garnet + biotite in the Middle Seve 
Nappe, and created an inverted metamorphic 
gradient in the Lower Seve Nappe ranging down 
to greenschist facies (Arnbom, 1980; Sjöström, 
1984; Bergman and Sjöström, 1997). This Bar-
rovian metamorphism was widespread, also 
producing kyanite + garnet + biotite in Jämtland 
(Sjöstrand, 1978) and kyanite + garnet + stauro-
lite + biotite in the Tømmerås area (Andréasson, 
1980). It was accompanied by amphibolite-
facies mylonitization along internal nappe con-
tacts (Sjöström, 1984; Bergman and Sjöström, 
1997), implying that the mylonitization and 
metamorphism were coincident with construc-
tion of the nappe stack. Coeval or subsequent 
greenschist-facies retrogression accompanied 
motion along the Seve–Köli and Seve–Middle 
Allochthon contacts (Sjöström, 1984; Bergman 
and Sjöström, 1997).

NEW METAMORPHIC PETROLOGY

Because the extant metamorphic petrology 
includes few quantitative pressure determina-
tions—and yet such information is needed to 
constrain depths of burial and exhumation—we 
studied selected parts of the Köli and Seve 
Nappes in the Trondelag–Jämtland region 
(Figs. 4 and 5). Pelites, both aluminous and 
calcareous, are widespread and therefore enable 
an areally comprehensive assessment of the P-T 
evolution of these nappes. All the pelites studied 
(Tables 1 and 2) include mineral assemblages 
indicating a Barrovian metamorphic sequence, 
but quantitative P-T determinations reveal 
development at pressures ~50% higher than 
a classic Barrovian metamorphic sequence. 
These pelite assemblages range from garnet + 
biotite + chlorite through staurolite + biotite + 
garnet or kyanite to kyanite + garnet + biotite; 
sillimanite did not develop during this parage-
netic sequence. Calcareous rocks, characterized 
by the presence of hornblende, typically lack 
staurolite and kyanite. Nearly all outcrops of the 

Støren, Meråker, and Tännfors Nappes not only 
lack pelites, but also garnet.

Mineral compositions were measured with 
the University of California, Santa Barbara, 
SX-50 electron microprobe operated at 15 kV 
and 15 nA using natural and synthetic mineral 
standards (Table DR1, electronic supplement).1 
We determined peak pressures and tempera-
tures using THERMOCALC (Powell and Holland, 
1988) (Table 2). Where possible, we used the 
intersections between the well-characterized 
garnet-biotite (GARB in Table 2), garnet-bio-
tite-muscovite-plagioclase (GBMP in Table 2), 
garnet-aluminumsilicate-silica-plagioclase 
(GASP in Table 2), garnet-hornblende (GARH 
in Table 2), and garnet-hornblende-plagioclase-
quartz (GHPQ in Table 2) reactions. Otherwise 
we used THERMOCALC to calculate intersections 
among as many reactions defi ned by well-known 
activities as possible. Generally, we fi nd that the 
garnet-aluminumsilicate-silica-plagioclase and 
garnet-biotite-muscovite-plagioclase barometers 
yield pressures that are statistically indistinguish-
able; the pressure differences are <1 kbar, and the 
pressures are well correlated, with a slope of 0.86 
and χ2 = 0.05. Garnet-hornblende-plagioclase-
quartz and garnet-biotite-muscovite-plagioclase 
are similarly close, with a slope of 1.2 and χ2 
= 0.24. Pressures and temperatures calculated 
with THERMOCALC were checked for consistency 
with the petrogenetic grid constructed from the 
Holland and Powell (1998) database using Gibbs 
(ver. March 2001; Spear and Menard, 1989). 
Pressure-temperature paths were modeled using 
the differential thermodynamics program of 
Gibbs (Spear and Menard, 1989).

Garnets in the Seve Nappes are typically 4–10 
mm in diameter and idioblastic; some show tex-
tural evidence for two stages of growth. Those 
from hornblende-free samples show rimward 
increases in Mg# [Mg/(Mg + Fe)] of 3–9 percent-
age points and rimward increases in grossular 
content of 2–12 mol%. Garnets in hornblende-
bearing rocks are invariably signifi cantly more 
calcic. None of the garnets shows rimward Mn 
increases indicative of resorption. Plagioclase 
in samples without hornblende shows rimward 
decreases in anorthite content, whereas plagio-
clase in samples with hornblende shows rim-
ward increases in anorthite content. Calculated 
pressures and temperatures for the Seve Nappes 
range from ~645 °C and 10 kbar to 745 °C and 
13 kbar (Figs. 4 and 5); the zoning described 
above implies that those conditions were reached 
via heating and compression (Fig. 4).

1GSA Data Repository item 2005024,  electron 
probe data, is available on the Web at http://
www.geosociety.org/pubs/ft2005.htm. Requests may 
also be sent to editing@geosociety.org.
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Garnets in the Gula Nappe are typically <1 
mm in size (locally reaching 3 mm) and range 
from xenoblastic to idioblastic. Garnet from one 
sample (H1603P1) shows a rimward increase in 
Mg# of 4 mol% and a decrease in Ca of 10 mol%; 
these changes are compatible with decreasing 
pressure and increasing temperature. Garnets 
from four Gula Nappe samples show core–rim 
decreases in Mg# of ≤8 percentage points and 
core–rim increases of 2–7 mol% grossular. These 
changes are compatible with increasing pres-
sure and decreasing temperature and are likely 
the result of regional metamorphic overprinting 
of a contact metamorphic mineral assemblage. 
Calculated pressures and temperatures for the 
Gula Nappe cluster in a restricted range— ~604–
660 °C and ~9 kbar—distinctly lower than those 
in the Seve Nappes. In the eastern part of the Gula 
Nappe, this regional metamorphism overprints an 
earlier low-pressure contact metamorphism. One, 
possibly two, samples from the western part of 
the Gula Nappe record heating and decompres-
sion. Thus, the Gula Nappe may have been 
assembled at ~9 kbar from two distinct pieces. 
The fault identifi ed by Bjerkgård and Bjørlykke 
(1994) along the Singsås–Åsli contact is a poten-
tial candidate.

The difference in pressure between the 
Gula and Seve Nappes implies different lev-

TABLE 1. SAMPLES AND UTM COORDINATE LOCATIONS

Sample UTM easting UTM northing Unit Rock type

H1531B1 629134 7038262 Gula Pelite
H1601B 370955 7014712 Seve Amphibolite
H1601C1 369988 7047900 Tännfors Calcareous pelite
H1601C2 369988 7047900 Tännfors Calcareous metavolcanic
H1601D1 642868 7066811 Gula Pelite
H1601E1 622316 7068535 Seve (Skjøtingen) Pelite
H1601E2 622316 7068535 Seve (Skjøtingen) Pelite
H1602A1 612416 7004747 Gula Pelite
H1602B1 615154 6999644 Gula Pelite
H1602C 624618 6994276 Fongen-Hyllingen Gabbro
H1602D1 646431 7002166 Seve (Øyfell) Pelite
H1602E 644244 6999848 Seve (Essandsjø) Amphibolite
H1602F2 638465 6986475 Seve over Saetra Amphibolite
H1602F3 638465 6986475 Seve over Saetra Pelite
H1602F4 638465 6986475 Seve over Saetra Pelite
H1603M1 612598 6971848 Gula Pelite
H1603N3 612396 6972866 Gula Pelite
H1603N4 612396 6972866 Gula Pelite
H1603P1 573565 6987388 Gula Pelite
H1603S1 532116 6973976 Seve (Blåhø) Pelite
H1603T1B 532116 6973976 Seve (Blåhø) Pelite
H1603T3 532116 6973976 Seve (Blåhø) Amphibolite
H1603T7 532116 6973976 Seve (Blåhø) Pelite
H1604E1 507598 6984251 Seve (Blåhø) Pelite
H1604E2 507598 6984251 Seve (Blåhø) Amphibolite
H1604E4 507598 6984251 Seve (Blåhø) Pelite
H1604J1 05454xx 70225xx Seve (Blåhø) Amphibolite
H1604J2 05454xx 70225xx Seve (Blåhø) Pelite
H1604J3 05454xx 70225xx Seve (Blåhø) Pelite
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els of burial and exhumation—~30–35 km 
and 40–50 km, respectively. These are “lower 
crustal” metamorphic conditions, signifying 
that these rocks represent either the exhumed 
base of a crustal section or a distinct layer 
buried beneath an overlying section of normal 
crustal thickness. The lower pressures recorded 
in the Gula Nappe imply structural separation 
from the Seve Nappes.

In conjunction with the petrological observa-
tions of previous workers discussed above, it is 
clear that parts of each of the major composite 
units—Köli Nappes and Seve Nappes—experi-
enced regional metamorphism before and after 

a contact metamorphic event. In some cases, 
the early regional metamorphism predated the 
contact metamorphism to such an extent that a 
cooling period between the two is likely; this is 
shown in the hypothetical, long-term P-T paths 
of Figure 4. We deduce that cooling must also 
have followed the contact metamorphism for 
three reasons: (1) Contact metamorphic textures 
are locally preserved; (2) calculated P-T paths 
for the subsequent regional metamorphism of 
many samples show heating from sub-contact-
metamorphic temperatures; and (3) calculated 
P-T paths for the subsequent regional metamor-
phism of other samples show cooling.

PREVIOUS THERMOCHRONOLOGY

Extensive thermochronologic work has been 
conducted in the allochthons in the area of Fig-
ure 1. In addition to the (chiefl y U/Pb) intrusion 
ages mentioned above, 40Ar/39Ar ages indicate 
the existence of at least two major thermal 
events (Fig. 4). Rather old hornblende ages of 
500 Ma to 448 Ma come from the Seve Nappes 
in the Norrbotten (n ≈ 15; north of Fig. 1), Tøm-
merås, and Åre areas (n = 4), with a cluster in 
the 469–463 Ma time range (Dallmeyer et al., 
1985; Dallmeyer and Gee, 1986; Dallmeyer, 
1990; Dallmeyer and Stephens, 1991; Page, 
1992; Svenningsen, 2000). This range of older 
hornblende ages suggests that a major amphibo-
lite-facies metamorphism in the Seve Nappes 
ended by ca. 469–463 Ma and that temperature 
subsequently did not rise signifi cantly above 
~550 °C. Slightly younger hornblende ages of 
464–455 Ma near Åre (Dallmeyer, 1990) may 
refl ect Ar loss from a subsequent metamor-
phism or may indicate southward younging of 
this major amphibolite-facies metamorphism. 
Muscovite 40Ar/39Ar ages from the Seve Nappes 
and Middle Allochthon in Norrbotten are 
~35 m.y. younger than the hornblende ages, 
at 444–425 Ma (most are 434–425 Ma) (Dall-
meyer and Gee, 1986; Dallmeyer and Stephens, 
1991; Page, 1992; Svenningsen, 2000), indicat-
ing slow cooling rates of ~3 °C/m.y.

In contrast, 40Ar/39Ar hornblende ages from 
the Meråker Nappe in the study area form a 
younger, fairly tight group at 435–420 Ma (Dall-
meyer et al., 1985; Dallmeyer, 1990). In the Gäd-
dede area (Fig. 1), the same range, 433–423 Ma 
(n = 4), is evident in 40Ar/39Ar hornblende ages 
from the Lower Köli Nappe, the lowest nappe of 
the Middle Köli Nappe, and the Seve Nappes. 
These hornblende ages suggest that a major 
amphibolite-facies metamorphism ended by ca. 
435–420 Ma. Like the hornblende ages, musco-
vite ages from the Seve and Köli Nappes from 
the Gäddede area and the study area are slightly 
younger, mostly 425–416 Ma (Dallmeyer et al., 
1985; Dallmeyer, 1988, 1990), suggesting more 
rapid cooling rates of ~15 °C/m.y. Biotite ages 
are similar but span a larger apparent age range, 
presumably because of undetected excess 40Ar.

NEW THERMOCHRONOLOGY

To tie the metamorphic history of the inboard 
oceanic and continental allochthons more 
tightly to that of the UHP core of the orogen, we 
measured 40Ar/39Ar ages of eight hornblendes, 
two biotites, and eight K-white micas (hence-
forth muscovite), using analytical procedures 
detailed by Calvert et al. (1999). Summaries of 
the results are in Figures 6 and 7 and Table 3, 

TABLE 2. THERMOBAROMETRY RESULTS

Sample Minerals Thermometer Barometer T
(°C)

P (kbar) cor

H1531B1 Ky St Grt Bt Pl Qtz (no Ms) GARB GASP 685 ± 50  9.6 ± 1.0 0.75
“ KFMASH GASP ~655  9.5 ± 1.0 n/a
H1601C1 Grt Bt Ms Hbl Pl Qtz GARB GBMP 577 ± 49  9.6 ± 0.9 0.89
“ GARH GHPQ 551 ± 39  9.6 ± 0.8 0.73
H1601D1 Grt Bt Ms Hbl Pl Qtz GARB GBMP 625 ± 63  8.2 ± 1.0 0.92
H1601E2 Grt Bt Ms Hbl Pl Qtz GARB GBMP 677 ± 59 12.8 ± 1.1 0.91
“ GARH GHPQ 627 ± 86 12.7 ± 2.0 0.8
H1602A1 Grt Bt Ms Chl Pl Qtz GARB GBMP 604 ± 46  9.5 ± 1.0 0.76
H1602B1 St Grt Bt Ms Pl Qtz GARB GBMP 574 ± 50  8.4 ± 1.0 0.87
“ KFMASH GBMP ~630 ± 20  9.4 ± 0.8 n/a
H1602D1 Ky St Grt Bt Ms Hbl Pl Qtz GARB GBMP 601 ± 51  9.8 ± 0.9 0.87
“ KFMASH GBMP ~650 10.5 ± 0.9 n/a
“ GARB GASP 600 ± 50 10.0 ± 1.0 0.75
“ KFMASH GASP ~645 10.5 ± 1.0 n/a
“ GARH GHPQ 560 ± 37  7.6 ± 0.7 0.65
H1602F3 Grt Bt Ms Pl Qtz GARB GBMP 661 ± 61 11.7 ± 1.2 0.88
H1602F4 Grt Bt Ms Pg Pl Qtz GARB GBMP 724 ± 65 12.4 ± 1.2 0.89
H1603M1 Ky St Grt Bt Ms Pl Qtz GARB GBMP 610 ± 52  9.2 ± 1.0 0.84
“ GARB GASP 610 ± 50  9.1 ± 1.0 0.75
“ KFMASH GBMP ~650  9.5 ± 0.9 n/a
“ KFMASH GASP ~650  9.2 ± 1.0 0.75
H1603N3 Ky St Grt Bt Ms Pl Qtz GARB GBMP 600 ± 52  8.3 ± 0.8 0.85
“ KFMASH GBMP ~660  9.2 ± 0.7 n/a
“ GARB GASP 575 ± 50  7.9 ± 1.0 0.75
“ KFMASH GASP ~660  8.7 ± 1.0 n/a
H1603P1 Grt Bt Ms Pl Qtz GARB GBMP 618 ± 57  8.7 ± 1.0 0.84
H1603S1 Ky Grt Bt Ms Pl Qtz GARB GBMP 742 ± 60 12.9 ± 1.1 0.86
“ GARB GASP 745 ± 60 13.3 ± 1.1 0.79
H1603T1B Ky Grt Bt Ms Pl Qtz GARB GBMP 713 ± 61 12.8 ± 1.0 0.9
“ GARB GASP 710 ± 61 11.7 ± 1.0 0.78
“ all reactions all reactions 701 ± 71 11.4 ± 1.5 0.78
H1603T7 Ky Grt Bt Ms Pl Qtz GARB GBMP 712 ± 60 12.7 ± 1.0 0.9
“ [St inclusions in Grt] GARB GASP 715 ± 60 13.2 ± 0.8 0.86
“ all reactions all reactions 680 ± 69 12.6 ± 1.5 0.86
H1604E1 Grt Hbl Pl Qtz GARH GARHB 633 ± 53 11.7 ± 1.2 0.86
H1604E4 Grt Bt Ms Pl Qtz GARB GBMP 712 ± 69 11.4 ± 1.3 0.89
H1604J2 Grt Bt Ms Pl Qtz GARB GBMP 621 ± 53  9.3 ± 0.9 0.84
“ KFMASH GBMP 625 ± 15  9.3 ± 0.9 n/a

   Note: “KFMASH” refers to pelite phase diagram produced with Gibbs (Spear and Menard, 1989) from Holland 
and Powell (1998) database; all other calculations from THERMOCALC v3.1 with May 2001 database (Powell 
and Holland, 1988). Mineral formulae and activities were calculated with the program “A-X”, by Tim Holland and 
Roger Powell; A-X calculates Fe3+ in clinopyroxene using charge balance considerations, which Carswell et 
al. (2000) demonstrated is a good approximation to Fe3+ measured by Mössbauer spectrometry. Uncertainties 
are ±1σ; “cor” is correlation coeffi cient from THERMOCALC. Mineral abbreviations after Kretz (1983). GARB—
garnet-biotite; GARH—garnet-hornblende; GASP—garnet-aluminumsilicate-silica-plagioclase; GBMP—garnet-
biotite-muscovite-platioclase; GHPQ—garnet-hornblende-plagioclase-quartz.
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which show age uncertainties of ±2σ. Most 
of the hornblendes yielded crankshaft-shaped 
spectra with isotopic ratios indicative of excess 
40Ar and no well-fi t isochrons (Fig. 6B). Three 
hornblende samples, however, yielded inter-
pretable spectra. Hornblende H1602E from the 
Seve Nappes gave a crankshaft-shaped spec-
trum but a well-fi t isochron with an age of 865 
± 198 Ma for 24% of the gas; while not precise, 
the isochron suggests that this sample has not 
been heated above ~500–600 °C since the late 
Precambrian (Fig. 6C). Six steps with low K/Ca 
ratios yield an isochron age of 466 ± 28 Ma for 
H1604E2. Hornblende H1602F2, from either 
the Seve or Saetra Nappes, gave a more-or-less 
monotonically increasing age spectrum from ca. 
422 to ca. 450 Ma (Fig. 6A); we provisionally 
interpret this spectrum to indicate initial closure 
at ca. 450 Ma, followed by Ar loss at ca. 422 Ma 
or slow cooling to ca. 422 Ma. Hornblende 

H1602C, from the Fongen–Hyllingen intrusion 
(Fig. 6D), gave a saddle-shaped or monotoni-
cally increasing age spectrum, with the bulk of 
the step ages ranging from 431 to 435 Ma; an 
isochron from most of the steps gave 422.9 ± 
4.6 Ma. We provisionally accept the isochron 
age of 423 Ma as the best age of the sample; 
an imprecise U/Pb zircon age of 426 +8/–2 Ma 
(Wilson, 1985) from the same intrusion lends 
credence to this interpretation.

Four micas were dated from Seve Nappes out-
crops in the southwestern half of the study area. 
The three muscovites, H1601E1, H1604E4, and 
H1604J3, gave plateau ages ranging from 398 to 
412 Ma; a biotite from H1601E1 yielded a pla-
teau age that is much older and therefore must 
be contaminated by excess 40Ar. Muscovite 
H1602D1 from the Seve Nappes yielded a pla-
teau age of 411 Ma. Muscovite H1602F3 from 
the Seve Nappes gave a plateau age of 416 Ma. 

Four micas from the Gula Nappe were dated: 
Paragonite H1603P1 from the western half of 
the Gula Nappe gave an imprecise plateau age 
of 402 ± 25 Ma, whereas muscovites H1602A1 
and H1603N4 from the eastern half are 415 
± 2 Ma and 415 ± 1 Ma, respectively. Biotite 
H1531B1, like H1601E1, is anomalously old 
when compared to muscovite ages and is prob-
ably affected by excess 40Ar.

The closure temperature for hornblende and 
muscovite in these rocks, with their mm-scale 
grains and probable 15 °C/m.y. cooling rates, 
are ~575 and 475 °C, respectively (Harrison, 
1981; Kirschner et al., 1996). The high meta-
morphic temperatures documented for the study 
area exceeded muscovite closure everywhere 
and hornblende closure everywhere except per-
haps in the Tännfors Nappe. This requires that 
the Barrovian metamorphism ended in the east-
ern part of the study area by ca. 425 Ma and in 
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Figure 6. 40Ar/39Ar data. (A) Well-behaved spectra. Step ages show uncertainties of ±1σ, and age uncertainties are ±2σ (continued on fol-
lowing page).
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the western part by ca. 400 Ma. Central parts of 
the study area may have cooled through musco-
vite closure at an intermediate time, ca. 415 Ma. 
In combination with the data reviewed above, 
the 40Ar/39Ar ages indicate major Köli Nappes, 
Seve Nappes, and Middle Allochthon imbrica-
tion at amphibolite facies prior to ca. 425 Ma. 
Subsequent differential imbrication/exhumation 
of <10 km occurred prior to muscovite closure 

in the southwestern Seve Nappes at 400 Ma. 
Cooling rates were ~15 °C/m.y.

DISCUSSION

Our new data, combined with the existing 
data reviewed above, allow us to create a more 
detailed and quantitative tectonic history of this 
part of the Scandinavian Caledonides (Figs. 8 

and 9) that can be used to address the question 
posed at the beginning of this article—when dur-
ing continent collisions are UHP rocks created?

1. The fi rst, still poorly understood, period 
of tectonism relates only peripherally to the 
Scandian UHP event. The Finnmarkian event 
produced high-pressure metamorphism at ca. 
503 Ma in the Seve Nappes in Norrbotten (north 
of Fig. 1); this orogeny has been attributed to 
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TABLE 3. SUMMARY OF 40Ar/39Ar DATA

Sample Mineral J TFA
(Ma)

IA
(Ma)

MSWD 40Ar/36Ar WMPA
(Ma)

Steps
(used)

%39Ar
(used)

H1531B1 bio 0.01338  426.7 ± 2.6 426.6 ± 5.6 0.08  531 ± 147 428.0 ± 3.2 3–16/16 94
H1601B hbl 0.01322 1164.6 ± 5.0 no good fi t n/a n/a n/a
H1601C2 hbl 0.01339  528.9 ± 1.8 no good fi t n/a n/a n/a
H1601E1 bio 0.01327  465.3 ± 3.0 477.9 ± 15 0.15  788 ± 809 466.6 ± 3.0 3–13/15 77
H1601E1 wm 0.01331  411.2 ± 1.2 406.5 ± 7.8 1.7  999 ± 922 412.2 ± 1.2 5–10/11 52
H1602A1 wm 0.01336  414.8 ± 3.1 415.0 ± 2.0 0.08 284.9 ± 1.8 414.9 ± 2.4 1–16/16 100
H1602D1 wm 0.01333  417.8 ± 2.4   441 ± 27 0.33  825 ± 526 413.9 ± 2.6 3–9/11 69
H1602C hbl 0.01323  434.3 ± 1.4 422.9 ± 4.6 0.78  701 ± 81 433 ± 2 2–13/13 99
H1602E hbl 0.01331   2162 ± 5.6   865 ± 197 0.38 6027 ± 888 n/a 4–12/20 24
H1602F2 hbl 0.01335    444 ± 3.6 no good fi t; see text for interpretation
H1602F3 wm 0.01329  418.1 ± 2.4 417.9 ± 2.0 0.28  174 ± 30 416.5 ± 2.4 1–11/11 100
H1603P1 wm 0.01137    401 ± 30   395 ± 34 0.79  347 ± 81  402 ± 25 2–10/10 97
H1603N4 wm 0.01334  415.4 ± 1.2 415.1 ± 2.0 0.44  289 ± 31 415.0 ± 1.2 3–11/11 90
H1603T3 hbl 0.01326  615.8 ± 1.8 no good fi t n/a n/a n/a
H1604E2 hbl 0.01339  570.6 ± 1.6   466 ± 28 0.15 6288 n/a 11–16/18 60
H1604E4 wm 0.01338  400.0 ± 1.2 397.5 ± 1.4 1.74  387 ± 14 398.7 ± 1.2 5–12/12 79
H1604J1 hbl 0.01336  671.1 ± 2.2 no good fi t n/a n/a n/a
H1604J3 wm 0.01338  405.1 ± 1.2 403.2 ± 3.2 0.77  342 ± 115 404.5 ± 1.2 4–10/12 88

   Note: J—irradiation fl ux parameter; TFA—total fusion age (uncertainty refl ects only analytical precision); IA—isochron 
age; MSWD—mean square weighted deviation (Wendt and Carl, 1991), which expresses the goodness of fi t of the isochron 
(Roddick, 1978); WMPA—weighted mean plateau age (italics indicate a “weighted mean age,” rather than plateau age, and 
the quoted uncertainty refl ects our assessment of the spectrum quality, which generally encompasses the range in ages of 
nearly concordant steps); hbl—hornblende; bi—biotite; wm—K-white mica; IA and WMPA are based on T steps and fraction 
of 39Ar listed in the last two columns. Preferred age is in boldface. Age uncertainties are ±2σ. Abbreviations: bio—biotite; hbl—
hornblende; wm—white mica.
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westward subduction of a Seve microcontinent 
(Brueckner and Roermund, 2004) beneath an 
older part of the Köli Nappes or to subduc-
tion of Seve Baltoscandian continental margin 
rocks beneath an unnamed arc (Dallmeyer and 
Gee, 1986; Roberts, 2003). Somewhat later, 
but prior to the late Arenig, Early Ordovician 
MORB-type ophiolitic rocks of the Köli Nappes 

were locally thrust onto Baltica(?) (e.g., the 
Otta area, Sturt et al., 1991) or onto a “Gula 
microcontinent” (Roberts and Stephens, 2000; 
Roberts et al., 2002b) during the Trondheim 
event (Fig. 9A). On the other side of Iapetus 
the Uppermost Allochthon was imbricated by 
top-W thrusting beginning at 477–468 Ma, per-
haps during the Taconic orogeny (Roberts et al., 

2001; Yoshinobu et al., 2002). Studies of well-
known ophiolites, such as Oman (e.g., Hacker 
and Gnos, 1997), show that ophiolite emplace-
ment onto the passive margin of one continent 
precedes subduction of both beneath another 
continent—a modern example is the imminent 
subduction beneath Iran of the Arabian passive 
margin with its cargo of the Oman ophiolite. 

Figure 9. Tectonic history. (A) Subduction of the Gula Nappe (microcontinent?)–Seve Nappes–Baltica(?) composite beneath those parts 
of the Köli Nappes that existed prior to the Llanvirn (e.g., the Støren Nappe), exhumation of the subducted Gula-Seve-Baltica(?) rocks, 
and emplacement of the pre-Llanvirn portions of the Köli Nappes onto the Baltoscandian continental margin. (B) Subduction of the 
Seve Nappes beneath those parts of the Köli Nappes that existed prior to the Llanvirn, burial of the Høyvik Group (Middle Allochthon) 
beneath the Seve Nappes, and exhumation of the Seve Nappes and Høyvik Group. (C) Formation of marginal-basin ophiolites (e.g., the 
Solund–Stavfjord ophiolite) of the Köli Nappes, rift magmatism in the Köli Nappes, and arc magmatism in the Uppermost Allochthon. 
(D) Collision of the active margin of Laurentia, emplacement of the newly created arcs, marginal basins, and their basement onto the Seve 
Nappes, and telescoping of all structurally lower units; deep burial of parts of the continental margin in the Solund, Råna, and Vestranden 
areas. (E) Subduction of Baltica to ultrahigh-pressure depths. (Precontractional confi guration of Baltica margin is modeled after modern 
Norwegian margin [Mosar, 2000].)

C. 445–432 Ma: formation of marginal-basin ophiolites (e.g., Solund–Stavfjord) of Köli Nappes;
rift magmatism in Köli Nappes; arc magmatism in Uppermost Allochthon
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This ophiolite emplacement can lead to near-
UHP metamorphism of the continental margin 
(Searle et al., 2001). Emplacement of the pre-
Llanvirn ophiolites of the Köli Nappes onto 
the Gula Nappe microcontinent (the outboard 
Baltoscandian continental margin) before both 
were overrun by the Uppermost Allochthon 
(Laurentia) could refl ect a similar tectonic set-
ting, but high-pressure metamorphism has not 
been discovered in the Gula Nappe.

2. The Trondheim event was followed 
by another cryptic regional metamorphic/
deformation event, the Jämtlandian orogeny, 
at ca. 450–445 Ma (Brueckner and Roermund, 
2004) (Fig. 9B). The Caradoc black shales in 
the Köli Nappes provide an older bound to this 
event. Indicators of this Baltoscandian margin 
event include ca. 450 Ma eclogites and garnet 
peridotites in the Seve Nappes (Brueckner et al., 
2004) and the 447 ± 4 Ma muscovite ages that 
postdate amphibolite-facies deformation and 
metamorphism in the outboard Middle Alloch-
thon on Atløy (Høyvik Group; Andersen and 
Jamtveit, 1990; Andersen et al., 1998); coeval 
orogeny in Laurentia is indicated by 452 Ma 
eclogite (Corfu et al., 2002) and 456 Ma titanite 
(Selbekk et al., 2000) in Uppermost Allochthon 
arc rocks. The regional metamorphism in the 
Köli and Seve Nappes that predates the 445–
432 Ma intrusive suite might also have occurred 
at this time. Together these features suggest 
westward subduction of the Seve Nappes 
beneath, perhaps, the Köli Nappes, followed by 
thickening, heating, and exhumation (Brueckner 
and Roermund, 2004), but the presence of high-
pressure rocks in at least three major units—and 
no identifi ed subduction-related magmatic 
arc—demonstrates an as-yet-unraveled, more 
complicated tectonic setting.

3. Third was an areally extensive magmatic 
episode at ca. 445–432 Ma that included forma-
tion of signifi cant new oceanic crust (e.g., the 
Solund–Stavfjord ophiolite; Dunning and Ped-
ersen, 1988) and intrusion of plutons and dikes 
throughout the Uppermost Allochthon and Köli 
Nappes (Fig. 9C). This includes the plutons 
described above, plus others intruding the Köli 
Nappes such as the Sunnhordland batholith 
(Andersen and Jansen, 1987; Fossen and Aus-
trheim, 1988), the Bremanger granitoid com-
plex, the Gåsøy diorite (Hansen et al., 2002), 
and the Sogneskollen granodiorite (Skjerlie et 
al., 2000). Some of the plutons within the Köli 
Nappes were derived from melting of mantle 
in a continental-rift setting, and others were 
derived by melting of mafi c crustal rocks at 
~900 °C and 10–15 kbar (Dunning and Grenne, 
2000; Pannemans and Roberts, 2000; Hansen 
et al., 2002; Nilsen et al., 2003); it is plausible 
that the seafl oor-spreading, rift magmatism, and 

mafi c crustal melts are all related. In contrast, 
the Bindal batholith intruding the Uppermost 
Allochthon formed in an arc setting (Nordgu-
len and Sundvoll, 1992). There are no known 
plutons of this age structurally beneath the Köli 
Nappes, implying that this magmatic event 
took place prior to the fi nal emplacement of 
the Uppermost Allochthon and the Köli Nappes 
(except the Early Ordovician elements of the 
Köli Nappes, e.g., the Vågåmo ophiolite) onto 
the Seve Nappes and Baltica. In the Köli Nappes 
this intrusive event postdates Ashgill limestone 
and apparently predates the upper Llandovery 
Broken Formation. This rifting event marks a 
major interregnum in the contractional history 
of the orogen, implying that the Scandian UHP 
metamorphism that followed is unrelated to the 
pre-435 Ma contractional history.

4. The fourth major identifi able tectonic 
episode is the fi rst that relates directly to the 
UHP event (Figs. 9D and 9E). Piecing together 
the evidence that defi nes this event is pivotal 
to reconstructing the origin of the UHP rocks. 
The evidence summarized in Figure 8 suggests 
that diachronous, eastward-propagating nappe 
emplacement began at ca. 437 Ma in the west 
and terminated by ca. 415 Ma in the east: (a) 
Regional metamorphism in the Vestranden 
gneiss (Fig. 1) (14 kbar at 435 Ma; Dallmeyer et 
al., 1992) and in the Råna complex of the Upper 
Allochthon (12 kbar at 432 Ma; Northrup, 
1997) may refl ect tectonic burial beneath the 
Uppermost Allochthon; hornblende in the 
Vestranden gneiss did not close to Ar loss until 
ca. 400 Ma (Dallmeyer et al., 1992). (b) The 
youngest fossiliferous rocks in the Upper 
Allochthon are upper Llandovery, and these 
are overlain by a thick turbiditic succession that 
may stretch into the Wenlock (Bassett, 1985), 
requiring that the faults bounding the Upper 
Allochthon are younger than late Llandovery 
(443–428 Ma). (c) The Wenlock Herland 
Group in the Middle Allochthon on Atløy was 
deposited during emplacement of the Upper 
Allochthon (Andersen et al., 1990). (d) Top-E 
thrusting of the Upper Allochthon after 434 Ma 
probably caused the 15–22 kbar metamorphism 
in the Solund area (Hacker et al., 2002) and 
may have caused the 423 Ma eclogite-facies, 
18–21 kbar metamorphism in the Lindås Nappe 
(Bingen et al., 2003); the Solund area remained 
above hornblende closure to Ar until ca. 400 Ma 
(Chauvet and Dallmeyer, 1992). (e) The Gula 
Nappe was tectonically buried to 9 kbar and 
then cooled to hornblende closure by 423 Ma 
(Fig. 4). Isograds within the Gula Nappe cut 
lithologic boundaries (Dudek et al., 1973; 
Olesen et al., 1973; Lagerblad, 1984; McClel-
lan, 1994) and also cross into the Meråker and 
Støren Nappes, requiring that these Nappes 

were juxtaposed prior to this regional metamor-
phism; muscovite ages indicate a pre-415 Ma 
age for this juxtaposition. (f) The compression 
+ heating paths to ~12 kbar shown by the Seve 
Nappes (Fig. 4) likely formed in the footwall 
of the Köli Nappes. (g) Inverted metamorphic 
gradients indicate thrusting of the Lower Seve 
Nappe over the Middle Allochthon during 
regional metamorphism in the Åre, Handøl, 
and Norrbotten areas (Arnbom, 1980; Sjöström, 
1984; Greiling and Kumpulainen, 1989); this 
must have happened after or during hornblende 
closure at 464–455 Ma and before mica closure 
at 429–427 Ma. (h) The youngest sedimentary 
rocks in the Lower Allochthon place a Wenlock 
(Bassett, 1985) bound on the end of thrust-
ing of this allochthon. (i) The transition from 
marine carbonate platform to continental fl uvial 
molasse sedimentation in the foreland in the lat-
est Wenlock likely marks the easternmost effect 
of nappe emplacement. Active continental colli-
sions, like the India–Asia collision, are typically 
associated with high topography—even pla-
teaus—such that the Laurentia-Baltica collision 
could have been characterized by a high-altitude 
plateau. The overlying 35–45 km thick crustal 
column required to produce the 9–12 kbar 
metamorphism exhibited by the Vestranden 
gneiss, Råna intrusion, Seve Nappes, Gula 
Nappe, Lindås Nappe, and Solund area supports 
this idea.

Thus, an eastward-propagating sequence of 
nappe emplacements is permitted by diverse 
data that span the western to eastern edges of 
the orogen, corroborating the ideas of many 
earlier workers. This Scandian deformation 
began in the west with the emplacement of 
the Köli Nappes onto the Seve Nappes and the 
emplacement of the Uppermost Allochthon 
(Laurentia) onto the Köli-Seve-Baltica amal-
gam (although the stacking history is unclear); 
the combined Uppermost Allochthon–Upper 
Allochthon–Middle Allochthon–Lower Alloch-
thon stack subsequently reached its easternmost 
thermal infl uence on the Baltica margin ca. 
420 Ma. At that time, the peak of the UHP 
metamorphism was still 10 m.y. in the future. 
What, then, caused the UHP metamorphism? 
Why did the Western Gneiss Region sink so far 
into the mantle?

In general terms, continental crust can be 
driven to UHP depths if it (1) becomes denser 
than the mantle and sinks under its own weight, 
(2) is attached to sinking oceanic lithosphere, 
(3) is overlain by denser, sinking rocks that push 
it downward, or (4) is attached to sinking conti-
nental lithosphere. (1) The continental crust of 
the Western Gneiss Complex is too felsic to have 
reached greater-than-mantle densities at UHP 
conditions: Walsh and Hacker (2004) calculated 
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maximum densities of 2.85–3.05 g/cm3 for the 
predominantly quartzofeldspathic gneisses of 
the Western Gneiss Complex at 10–30 kbar. 
(2) The Western Gneiss Region cannot have 
been pulled deep into the mantle because it was 
attached to subducting, old oceanic lithosphere 
as the emplacement of ophiolitic and continen-
tal margin rocks onto the Baltica margin just 
10–20 m.y. earlier requires large-scale thrusting 
between the two. (3) The Scandian thrust sheets 
reached pressures of 12–14 kbar (Fig. 8). At 
just a few kbar higher pressure, mafi c alloch-
thons overlying the Western Gneiss Complex 
would have become eclogites dense enough to 
sink into the mantle (e.g., Fig. 8 of Hacker and 
Abers, 2004) and depress the underlying West-
ern Gneiss Complex continental crust. Perhaps 
the Blåhø Nappe, which is folded into the West-
ern Gneiss Complex in the core of the orogen 
and consists of about half mafi c rocks that are 
locally UHP eclogites (Terry and Robinson, 
2004; Walsh and Hacker, 2004), is the record 
of this event. (4) Continental lithosphere capped 
by 20–30 km of crust with the 2.95–3.05 g/cm3 
density calculated above for the Western Gneiss 
Complex is negatively buoyant with respect to 
the asthenosphere (Cloos, 1993), implying that 
the Western Gneiss Complex could have sunk 
under its own weight if it transformed to high-
pressure minerals and was depressed far enough 
into a suffi ciently low-viscosity asthenosphere.

CONCLUSIONS

The UHP rocks in the Western Gneiss Region 
of Norway were produced during the latest stages 
of the Scandian continental collision. Ophiolite 
emplacement beginning at 435 Ma produced 
high-pressure metamorphism of the continental 
margin, but was complete 10–20 m.y. before the 
peak ultrahigh-pressure event. The early stages 
of continental collision produced widespread 
9–12 kbar metamorphism—and possibly a Tibet-
style continental plateau—that was fi nished by 
415–400 Ma. The UHP metamorphism occurred 
at 410–400 Ma during the closing stages of the 
continental collision, with no simple relationship 
to earlier orogenic processes.
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