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BACKGROUND AND HISTORY

This Geosphere themed issue is an outgrowth 
of our Penrose Conference: Origin and Uplift 
of the Sierra Nevada, California, which was 
held in Bridgeport, California, August 16–20, 
2010. The theme is here expanded to include 
the Walker Lane (Fig. 1), since a large number 
of our Penrose abstracts were oriented to that 
topic, and because that region is no less a part 
of the Sierran story than the high peaks them-
selves. A fundamental question for the confer-
ence and themed issue is “How did the Sierra 
Nevada form?” The question can mean many 
things to disparate disciplines. One might refer 
to the age and origin of the rocks that form the 
Sierra Nevada batholith, or instead to the time 
at which such rocks were uplifted to form the 
topographic crest of the eastern Sierra. One 
might also speak to the origin of canyons and 
peaks formed by erosion as much as uplift, or to 
the time at which the Sierra’s varied present-day 
ecological zones were established. The answers 
to these questions can be quite different, but are 
not necessarily independent, as insights from 
one may lend insight to another. Finally, the 
complete story of the Sierra also cannot be 
told without the tectonic forces that act on the 
Sierran  crust, which involves the evolution of 
the San Andreas Fault system and the opening 
of the Gulf of California.

What makes the Sierra Nevada mountain 
range of particular interest is the rich history 
of geologic studies. Pioneers of Sierran geol-
ogy have provided a well-constructed platform 
on which later scientists could build, with the 
Range of Light illuminating processes as diverse 
as glaciation, structural geology, petrology, and 
tectonics. Some aspects of this storied history 
are well known, such as John Muir’s early work 
on Sierran glaciers and glacial erosion (Muir, 
1871, 1911; followed by Matthes, 1929, and 
Blackwelder, 1931), which initiated our current 

understanding of the forces that carve Sierran 
peaks and canyons. Perhaps less well known 
are 19th-century speculations on the nature 
of range uplift. Ransome (1898, p. 71), for 
example, mapped lava fl ows in the west-central 
Sierra Nevada; noting contrasts in Neogene and 
modern canyon slopes, he suggested that “the 
elevation of the crest of the Sierra Nevada…
has been…produced by a simple block-tilting 
without perceptible warping”—a view that 
has been subsequently accepted and quantifi ed 
(Huber, 1981; Wakabayashi and Sawyer, 2001). 
Early workers also recognized that Eocene and 
younger strata in the Sierra Nevada were largely 
preserved in “paleochannels” that transported 
material from east to west (parallel to modern 
rivers), although their headwaters were inferred 
to lie at the present-day crest (Lindgren, 1911), 
which we now know did not form until 10 Ma 
or later (Busby and Putirka, 2009). Also of note 

are the early tectonic speculations on the origin 
of what we now refer to as the “Sierran block” 
and the adjacent Walker Lane structural belt. 
The Walker Lane belt has been in the geologic 
literature since Locke et al. (1940) used the term 
to describe a region of the western Great Basin 
where extensional faults have a signifi cant dex-
tral shear component. But, six years earlier, 
Gianella and Callaghan (1934) not only drew 
the outlines of the Walker Lane, but also noted 
the similarity of horizontal components of strain 
between the western Great Basin and what 
was then referred to as the San Andreas “rift.” 
Gianella and Callaghan (1934, p. 22) speculated 
“that the underlying causes of movement in at 
least the western part of the Great Basin may 
be related to those in California” (referring to 
the San Andreas), and suggested that the Walker 
Lane may represent “a tectonic line” that sepa-
rates the San Andreas and Great Basin structural 
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Figure 1. A map showing an 
outline  of the Sierra Nevada 
and approximate boundaries of 
the Walker Lane belt. The out-
line of the Walker Lane (and 
its southern extension into the 
Eastern California Shear Zone) 
is modifi ed from Faulds et al. 
(2005) and Oldow and Cashman 
(2009); we draw the western 
boundary to coincide with the 
Sierra Nevada range front; the 
Walker Lane belt is then drawn 
to include the region of the 
Basin and Range province where 
basins and ranges trend more 
N–S, rather than NE–SW. Our 
outline for the Sierra Nevada 
includes the topographically con-
tiguous part of the range, and 
so includes the Lassen Volcanic 
Center, which is the geologically 
southern terminus of the modern Cascades province. The base map is from Andrew Birrell 
(http://birrell.org/andrew/reliefMaps/image.php?zone = west&type = jpg&scale = 50).
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regimes. This view of a connection between 
Walker Lane motion and stress and strain along 
the San Andreas Fault system has survived the 
plate tectonic view of the San Andreas (Atwater, 
1970), and has been verifi ed by Global Position-
ing Studies, which show that the Walker Lane 
takes up 20%–22% of Pacifi c–North American 
displacement (Bennett et al., 1999; Dixon et al., 
1995, 2000). Perhaps even more impressive 
is that a structural geologist today could use 
nearly the precise same language as Gianella 
and Callaghan  did in 1934, some three decades 
prior to the plate tectonic revolution.

Since these early works, the Sierra Nevada 
and adjacent Walker Lane regions have played 
center stage in studies of batholith construc-
tion (Kistler and Peterman, 1973), the origin 
of low-angle normal faults (Proffett, 1977) 
and associated “chaos” formed by huge gravi-
tational slides (e.g., Troxel and Wright, 1987), 
the evolution of pull-apart basins (Burchfi el 
and Stewart , 1966), the tectonic signifi cance of 
ophiolites and ultramafi c rocks (Moores, 1970), 
the origin of metamorphic core complexes 
(Wright et al., 1974), and volcanic processes 
such as bimodal volcanism and magma mixing 
(Bacon, 1982; Bacon and Metz, 1984). It may 
be fair to say that the Sierra Nevada is a type 
example of many such processes, including 
range uplift and microplate formation, and the 
crustal extension processes that yield continen-
tal rift basins and mountain ranges.

CURRENT ISSUES IN SIERRA 
NEVADA–WALKER LANE GEOLOGY

In the past few decades, the Sierra Nevada 
has entered center stage again, this time on the 
issue of lithosphere removal. Careful geologic 
and geophysical studies (Ducea and Saleeby, 
1996, 1998; Fliedner et al., 1996; Wernicke 
et al., 1996) suggest that cold continental mantle 
lithosphere beneath the eastern part of the range, 
being denser than underlying asthenosphere, 
drips back into the mantle (e.g., Zandt et al., 
2004). The driving force for such a buoyancy 
shift within the thermal lithosphere may be gen-
erated by the accumulation of dense pyroxene- 
and garnet-rich lithologies, which may in turn 
represent the crystalline residues of parent mag-
mas that fractionate to form the Sierra Nevada 
batholith (Ducea and Saleeby, 1996). Such a 
removal of lithosphere leads to an upward fl ow 
of asthenosphere, which provides (a) a source 
of buoyancy to support high elevations (Ducea 
and Saleeby, 1996), and (b) mantle partial melts, 
which supply volcanic eruptions within and 
adjacent to the range (Farmer et al., 2002).

Our attempts to determine how this story 
unfolds lead to a great number of unresolved 

but important questions. For example, the cur-
rent standard model clearly implies that the 
petrologic nature of batholith development 
determines the rates and timing of future uplift. 
Earlier views of Sierra Nevada uplift posited an 
isostatic model, whereby the high elevations in 
the eastern Sierra are supported by great thick-
nesses of crust (>60 km; Bateman and Eaton, 
1967). The discovery by seismologists that the 
crust is ≤40 km in thickness, and is of greater 
thickness in the lower-elevation western part of 
the range (Fliedner and Ruppert, 1996), shows 
that Airy isostasy cannot apply to the Sierra. 
Warm mantle asthenosphere is thus posited to 
provide buoyancy to support its high elevations 
(Wernicke et al., 1996). If this view is correct, 
the “high Sierra” exists only because of the 
formation, and removal, of dense crystalline 
residues of magmas parental to the batholith. 
Absent the formation of dense residues, the 
lithosphere “drip” could not have formed, and 
asthenosphere upwelling would not occur, pro-
viding no source of buoyancy.

Not unrelated are potentially competing 
models for Sierra Nevada uplift; some argue 
that the range has mostly been high since the late 
Cretaceous (House et al., 1999), while others  
argue that range uplift has occurred mostly 
since 10 or 5 Ma (Huber, 1981; Wakabayashi 
and Sawyer , 2001). These models might not be 
mutually exclusive: Clark et al. (2005) suggest 
at least three pulses of uplift, occurring in the 
late Cretaceous, again at 32 Ma, and another at 
3.5–0 Ma. These varied works lead to a range 
of questions:

• Does granitoid batholith formation neces-
sarily portend a later emergence of a high moun-
tain range, through the loss of dense residual 
crystalline phases? If so, what time scales are 
required for lithosphere removal?

• If lithosphere can only be removed once, 
should asthenosphere upwelling support only 
one phase of uplift? If so, and if uplift does 
occur in pulses over a protracted period of time, 
which phase of uplift is driven by asthenosphere 
upwelling, and what forces drive other uplift 
phases?

• Alternatively, DeCelles et al. (2009) sug-
gest that delamination can be repeated on a 
25–50 Ma time scale. Can episodes of uplift 
operate on a similar time scale, as is implied by 
the results of Clark et al. (2005)? Might other 
cyclic processes be at work?

Yet another set of issues arises from the com-
positions and temporal distributions of volcanic 
rocks. Farmer et al. (2002) argue that mantle 
delamination occurred in the Pliocene, as sig-
naled by high K

2
O Pliocene volcanism, which 

was supposedly triggered by asthenosphere 
up welling. Age determinations across the Sierra, 

including the southern Sierra, however, indi-
cate a distinct pulse of volcanism at 10 Ma 
throughout the range. More perplexingly, as 
even Farmer et al. (2002) note, Pliocene lavas in 
the southern Sierra still carry the geochemical 
signature of enriched mantle lithosphere, so an 
enriched mantle lithosphere must have existed 
below the Sierra at the time of the Pliocene 
eruptions.

• Did delamination of ancient lithosphere 
occur in the Pliocene or the Miocene, or earlier? 
If delamination (and asthenosphere upwelling) 
is a Pliocene event, what is the driving force 
of mantle melting so as to yield volcanism at 
15–10 Ma, which occurs throughout the range? 
If asthenosphere upwelling predated the Plio-
cene, what structural controls led to volcanism 
from the Pliocene to the present?

Much new research is now focused on the 
spatial scope and temporal extent of what has 
been termed the “Ancestral Cascades.” Chris-
tiansen and Yeats (1992) outlined a region of 
Miocene-age andesitic volcanism that extends 
from central California into the Basin and 
Range province south to Las Vegas (Colgan 
et al., 2011). Based on space-time distributions 
of volcanic rocks using NAVDAT, Glazner 
and Farmer (2008) indicate that what has been 
referred to as Ancestral Cascades are rocks that 
may instead be related to larger Cordilleran spa-
tial patterns of volcanic migration and so have 
little  connection to the modern Cascades; they 
thus suggest that the term “Ancestral Cascades” 
has no meaning. In contrast, others have noted that 
the fi eld characteristics and geochemical signals 
of Miocene and some Pliocene volcanic rocks 
support remarkably well the Christiansen and 
Yeats (1992) model (Cousens et al., 2008; Busby 
et al., 2008; Busby and Putirka, 2009), espe-
cially for subduction-related volcanism formed 
prior to arrival of the Mendocino Triple  Junc-
tion (MTJ). These subduction-related volcanic 
rocks include the type section of the volcanic rock 
termed “latite” (by Ransome, 1898), which 
is distinguished by its high K

2
O, a geochemi-

cal signal that Manley et al. (2000) suggest is 
related to delamination. Meanwhile, Frasetto 
et al. (2011) see a “delamination” Moho extend-
ing from the southern Sierra north to the Lake 
Tahoe region, beneath the putative Miocene arc. 
We thus obtain another set of key questions 
related to volcanic activity.

• If there was indeed an Ancestral Cascade 
arc, what is its areal and temporal extent?

• What is the meaning of the term “Ancestral 
Cascades” if such volcanism is limited in tem-
poral extent, or if such volcanics fall into other, 
broader Cordilleran space-time patterns? Or, 
might all early- and mid-Tertiary volcanism in 
the interior (e.g., in Nevada, Arizona, and Utah) 
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of the Cordillera (pre-passage of the MTJ) be 
“Ancestral Cascades”?

• If the term “Ancestral Cascades” is discon-
tinued, then what processes controlled Miocene-
age volcanism, especially those rocks erupted 
north of the MTJ? If such rocks are ascribed to 
Basin and Range extension, what explains their 
geochemical contrasts (lower alkalis, lower 
Sm/Yb) compared to Basin and Range volcanics?

• If high K
2
O is a signal of delamination, 

might the latites of the central Sierra mark an 
earlier episode of delamination, which could 
still be visible in the seismic signal?

• Might high K
2
O have nothing to do at all 

with lithosphere degradation events (see Putirka 
and Busby, 2007)?

Finally, the importance of the Sierra Nevada–
Walker Lane region cannot be overemphasized 
for understanding the processes involved in the 
rupturing of continental lithosphere. This region 
has been described as the northernmost exten-
sion of the Gulf of California rift where it has 
not yet completed the process of continental rup-
ture (Faulds and Henry, 2008; Jayko and Bursik, 
2012). Similarly to the Gulf of California, the 
Walker Lane started to develop during Miocene 
time, and both form an oblique-divergent plate 
boundary (Wilson, 1965; Larson et al., 1968; 
Lonsdale, 1989; Wesnousky, 2005; Lizarralde 
et al., 2007; Umhoefer et al., 2007; Putirka and 
Busby, 2007; Surpless, 2008). Many questions 
remain regarding the formation of oblique rift 
margins because they have not been studied in 
as much detail as orthogonal rift margins

Data generated from the Gulf of California 
MARGINS Rift Initiation focus site are now 
being supplemented by on-land studies in the 
Walker Lane transtensional rift, which has not 
yet completed the process of continental rup-
ture. Extensive Cenozoic volcanic and sedimen-
tary rocks, excellent exposure, and abundant 
previous geological mapping in the Walker 
Lane make it an excellent region in which to 
study rifting processes (e.g., Henry and Perkins, 
2001; Trexler et al., 2000; Henry et al., 2007; 
Busby et al., 2008; Busby and Putirka, 2009; 
Cashman et al., 2009; Jayko, 2009; Hagan et al., 
2009; Norton, 2011). Furthermore, the region is 
important for geothermal and mineral resources 
and has a population living on active faults (e.g., 
Reno–Carson City population corridor and the 
North Tahoe basin). However, the processes 
involved in oblique continental rifting, as well 
as the uplift history of the Sierra Nevada, cannot 
be understood without reference to the broader 
context, including Laramide fl at-slab subduc-
tion, whose effects reached far inboard of 
the Sierra; these effects include thickening 
of the crust to form a high broad plateau referred 
to as the “Nevadaplano” (DeCelles, 2004). 

Another tectonic context involves ensuing slab 
rollback, resulting in ignimbrite fl are-up on the 
thickest “Nevadaplano” crust, and dispersal of 
ash fl ows down ~200-km-long paleochannels 
across the western shoulder of the Nevadaplano, 
now the Sierra Nevada. This fl are-up resulted in 
burning of the lithospheric land bridge across 
what is now the Great Basin (Dickinson, 2002, 
2006, 2011; Henry, 2008; Best et al., 2009).

The papers of this themed issue touch on 
these key topics and others. This themed issue 
brings together the results connected not so 
much by approach or technique, but rather by 
their authors’ interest in fundamental problems 
of tectonics, volcanism and range uplift, and 
the use of the Sierra Nevada as a case study 
for how mountain ranges form and evolve. Our 
hope is that the cumulative geologic, geochemi-
cal, and geophysical data may point toward a 
single coherent tectonic model that explains 
all observations—volcanic, structural, strati-
graphic, paleobotanical, and geochemical, etc. 
But if nothing else, these papers perhaps attest 
to the usefulness of collaborative research for 
addressing fundamental questions of the origin 
of the Sierra Nevada, microplate formation, and 
rift initiation.
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