Corrigendum

Corrigendum to: Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment
[Marine and Petroleum Geology 22 (2005), 551–558]

Ira Leifer a,*, Jim Boles b

a Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
b Department of Earth Sciences, University of California, Santa Barbara, CA 93106, USA

The bubble emission size distribution for the major seep vent, shown in Fig. 8C, has been recalculated and it was determined that the published distribution was erroneous. The emission size distribution decreases as $\Phi \sim r^{-0.38}$, as shown below, rather than the reported $\Phi \sim r^{-0.58}$, which describes the layer size distribution (the number of bubbles in the plume in a layer 1-m thick). The layer distribution is useful for predicting static plume properties, such as sound scattering from the bubbles, while the emission distribution is useful for modeling evolutionary bubble plume properties such as mass transfer to the atmosphere. A major vent produces a broad, weakly size dependent $\Phi(r)$, in contrast to minor vents, which have lower flow rates and produce a narrow, sharply peaked $\Phi(r)$. The authors apologise for any confusion caused.

Fig. 8C. Bubble flux size distribution, Φ, versus radius, r, for a major vent including least-squares, linear regression analysis fit over range shown for the major vent plume. Vertical lines are ±1 standard deviation.